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Abstract

Instability waves have been established as the dominant source of mixing noise
radiating into the downstream arc of a supersonic jet when the waves have phase veloc-
ities that are supersonic relative to ambient conditions. Recent theories for supersonic
jet noise have used the concepts of linear instability wave theory for predicting radiated
noise. If the mean flow is known, the stability characteristics of the normal modes are
obtained for a supersonic jet at each axial location. The axial variation of these charac-
teristics represents a growing and decaying instability wave in the jet shear layer. The
noise radiated by this instability wave is determined by a matching process between the
inner instability wave solution and the outer acoustic solution. This analytical technique
is extended to the prediction of noise radiation from supersonic coaxial jets.

The instability wave noise generation analysis requires a known mean flow. The
mean flow of supersonic coaxial jets are not described easily in terms of analytic functions.
To provide mean flow profiles at all axial locations, a numerical scheme is developed to
calculate the mean flow properties of a coaxial jet. The Reynolds averaged, compressible,
parabolic boundary layer equations are solved using a mixing length turbulence model.
Empirical correlations are developed to provide the shear layer spreading effects due
to velocity and temperature ratios and Mach number. Both normal velocity profile and
inverted velocity profile coaxial jets are considered with the mixing length model modified
in both cases to obtain reasonable results when the two stream jet merges into a single
fully developed jet. The mean flow calculations show good qualitative and quantitative
resemblance to measured single and coaxial jet flows.

The analytical and numerical analyses are used to conduct a parametric study
of supersonic coaxial jets. The results from mean flow and stability calculations are
used to predict the noise radiation from coaxial jets with different operating conditions.
Comparisons are made between different coaxial jets and to a single equivalent jet with
the same total thrust, mass flow, and exit area. The area ratio for the coaxial jets is held
constant. Results indicate that normal velocity profile jets can have noise reductions
compared to the single equivalent jet, especially if the outer jet stream is hotter than the
inner jet stream. No noise reductions are found for inverted velocity profile jets operated
at the minimum noise condition compared to the single equivalent jet. However, it is
inferred that changes in area ratio may provide noise reduction benefits for inverted
velocity profile jets.
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Chapter 1

INTRODUCTION

The renewed interest in the development of a High Speed Civil Transport that is
economically viable and environmentally compatible has re-energized research efforts on
supersonic jet noise. This noise issue was addressed intensely in the supersonic transport
program during the 1960’s. The large funding level provided resources for large scale
design and testing of jet nozzle hardware as well as facilities for small scale controlled
experiments and for theoretical studies. When the program was abruptly terminated
in 1971, the large scale design effort stopped, Stitt [1990]. However, a low level generic
research program continued through the 1970’s allowing small scale experiments and
theoretical studies to advance the ideas that were beginning to appear (NASA [1969]
and Goldstein [1976]). By the 1980’s, funding levels were a small fraction of past levels
as interest in supersonic jet noise issues waned. This lasted until 1987 when the United
States government recognized the need to set national goals to maintain leadership in
the increasingly competitive world of aviation. As described in a review by Darden et al.
[1993], among these goals was an increase in research and development in supersonic
transport technology. Given the history and the technical issues to be addressed in the
High-Speed Research Program, NASA initiated in 1990, the community noise problem
generated by supersonic jets is still a strong research motivator. To meet FAR 36 Stage
3 noise regulations (FAA [1990]), noise suppression technology will need to be advanced
beyond current levels.

Virtually, since the beginning of jet aircraft transportation service, community
noise created by jet exhausts has been a problem, Burns [1973]. Expanding service and
increased awareness of noise pollution has only exacerbated the problem. The propen-
sity to litigate, Bennett and Hoover [1991], and regulate, Linn and Tedrick [1991], the
noise problem to a satisfactory resolution, without hampering the economic benefits of
jet aircraft transportation, will not lead to a satisfactory public accommodation of jet
aircraft without understanding the jet noise generation process. It is, as Lighthill [1954]
wrote, “...largely as a result of the public odium with which the aircraft industry is
threatened on account of the noise of jet aeroplanes” that a large number of experimen-
tal and theoretical studies have been performed on jet noise over the last 40 years. Thus,
there is a continuing interest to understand the jet noise generation process, particularly
those processes that are important to supersonic jet noise. Basic understanding leads to
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means that may modify the noise generation process and provide acceptable community
noise levels from supersonic jet aircraft.

This paper examines a method to modify the noise generation from a supersonic
jet. A single, supersonic, axisymmetric jet with given initial velocity and temperature
conditions is replaced by a dual stream, coaxjal jet with different initial velocities and
possibly different initial temperatures. At least one of the jet streams is supersonic. For
classification purposes, when the coaxial jet low has a higher inner stream velocity than
an outer stream velocity, the jet is referred to as a normal velocity profile jet. If the outer
stream velocity is higher than the inner stream, the jet has an inverted velocity profile.
The jet stream temperatures do not enter into this classification. Thus, a normal velocity
profile jet can have a normal temperature profile or an inverted temperature profile as
can occur for an inverted velocity profile jet, also.

The study combines analytical and numerical techniques. The analytical tech-
nique is based on the theory that instability waves propagating in the jet shear layer
at phase velocities that are supersonic relative to ambient are the dominant sources of
mixing noise radiating in directions downstream from the jet. The mean flow of the
supersonic jet is assumed to be perfectly expanded; thus, shocks are not considered in
this study and the noises associated with them are ignored in the analysis. To complete
the analytical solution, the developing mean flow properties must be known at every
axial location. Due to the complexities of describing developing normal and inverted
profile jets with various velocity and temperature conditions, the mean flow is deter-
mined numerically. Before describing these techniques in more detail, we first consider
the emergence of the role of instability waves as a source of supersonic jet mixing noise
and some experimental history on axisymmetric coaxial jets.

1.1 Instability Waves in Jets

The instability of a shear layer has long been recognized. Rayleigh [1877] discussed
the analysis of a plane vortex sheet separating two fluids moving with different velocities.
Based on earlier work by Helmholtz in 1868 and Kelvin in 1871, Rayleigh showed that
for this ideal case of a vortex sheet separating frictionless fluids, the motion was always
unstable and the instability increased with an increase in the frequency of the distur-
bance. However, he recognized that this result did not agree with experiments. Small
jets that were seen to have sensitivities to sound at lower frequencies ceased showing any
sensitivity to higher frequencies. He pointed out that the presence of fluid friction would
immediately broaden the fluid discontinuity represented by the vortex sheet. As the
fluids moved, the transition between them becomes more gradual, until at a transition
layer width comparable to the wavelength of a disturbance, the previous analysis became
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inapplicable. Rayleigh re-analyzed the problem for finite thickness shear layers and, as-
suming a frictionless fluid, developed an equation which was subsequently named after
him; the Rayleigh equation. A number of simple flows were considered, both bounded
and unbounded flows, using piecewise-linear approximations to describe the mean flow.
These problems involved temporal stability and, basically, the analysis showed that as
the shear layer grew, the instability increased with disturbance wavelength, reached some
maximum value, and then decreased until neutral stability occurred. The shear layer was
then not affected by the disturbance. Experimental evidence at the time was collected
from jets with a flame or with smoke. The jet responded to acoustic excitation with
the most sensitive position at the nozzle exit. The behavior of the jet was characterized
visually as having gradually increasing sinuosity until the jet disintegrated.

Progress in the study of the instability of shear layers, or hydrodynamic stability,
may be found in the texts by Lin [1955] and Drazin and Reid [1981]. With observations
like Rayleigh’s involving the jet disintegrating, these works study the instability of par-
allel shear flows as a means of transition from laminar to turbulent flows. Many studies
were conducted to confirm that free shear flows were unstable in the inviscid limit due to
the presence of a point of inflection in the mean velocity profile. In addition, the initial
growth rates of the instability in shear flows compared well with predictions from linear
stability theory. After transition, statistical methods were used in attempts to describe
the turbulent jet flow.

Initially, the study of noise from turbulent jets was dominated by the theory devel-
oped by Lighthill [1952]. The fundamental equations of fluid motion were manipulated
to isolate terms that represented the fluctuating stresses created in a localized region
of space in a moving fluid. These fluctuating stresses became the source terms for the
sound that propagated into the surrounding medium at rest. The theory resulted in the
important scaling law that the total sound power radiated by the jet is proportional to
the eighth power of the jet velocity. This theory was aggressively studied theoretically
and much experimental work was conducted to verify it during the 1950’s, 60’s, and
70’s as evident in reviews by NASA [1969], Crighton [1975], and Goldstein [1976]. More
recently, Lilley [1991] has summarized, in some detail, the current status of the classical
jet noise theory. Though the Lighthill approach applies to both subsonic and super-
sonic jets, after the early 1970’s the growing recognition of the presence of large scale
structures in shear flows and their representation as instability waves led to alternative
theories for noise generation by supersonic jets.

Evidence began to mount that large structures and orderly patterns existed in
turbulent jet flows. Puffs and vortices with length scales on the order of the shear
layer thickness were observed. The benchmark papers by Crow and Champagne [1971]
and Brown and Roshko [1974] confirmed the presence of large coherent structures in
turbulent flow. The photographs in Brown and Roshko [1974] showed them clearly.
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Furthermore, when Crow and Champagne [1971] subjected the turbulent jet to periodic
forcing, hot-wire measurements showed that a wave was generated in the flow with
initially growing characteristics that were in accord with linear stability theory. Thus,
the large scale orderly structures were seen as having wave-like characteristics and the
description of the structures as vortices or waves was considered complementary for
turbulent free jets.

At the same time, proposals of the connection between large scale structures or
instability waves and the noise radiation of perfectly expanded supersonic jets began
to appear. Use of the Lighthill formulation had led to the concept of eddy Mach wave
radiation where the turbulent eddies were convected at speeds greater than the ambient
speed of sound (Goldstein [1976]). Though qualitative results were achieved, the true
nature of the sound sources were still concealed. A representative attempt to model
the sound sources as instability waves is found in Liu [1971]. Rather than using the
Lighthill acoustic analogy, Liu built on the concept of splitting the flow quantities in the
compressible equations of fluid motions into mean, periodic, and turbulent components
to develop integral equations representing energy transfer between the components. The
local mean flow was used to calculate the local amplification rates, phase speeds, and
shape functions of the instability wave. The global amplitude of the wave versus axial
distance was then found through the energy integrals. The instability wave was found to
travel supersonically with an amplitude that peaked within the shear layer and decayed
with distance perpendicular to the shear layer. These remnants of the instability wave
outside the jet were used by Liu [1974] to calculate the near field noise generated by the
jet. Liu suggested that the near field fluctuations resulting from instability wave analysis
could be used in the Lighthill integral to represent the source terms for far field noise
calculations. Care would have to be taken on the positioning of an imaginary cylinder
placed around the jet on which the fluctuations were calculated and on the proper use
of the retarded potential.

Tam [1971] took a more simplified approach to the early study of the radiation
of sound by instability waves in supersonic jets. Modeling the jet with a cylindrical
vortex sheet simplified the governing disturbance equations to a wave equation outside
the jet and a convected wave equation inside with appropriate kinematic and dynamic
boundary conditions between the two regions. An asymptotic solution outside the jet
resulted in directional characteristics similar to those observed in shadowgraphs of su-
personic jets. An extension of the theory modeled the mean flow as having a periodic
flow structure, Tam [1972]. Disturbances would interact with this flow structure and
large scale spiral-mode instabilities would be triggered at resonant conditions. The peak
frequency of the jet power spectrum was predicted from this resonant condition and
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found to agree favorably with measured power spectra of perfectly expanded cold super-
sonic jets. Later, this resonant condition theory was dropped from the theory of noise
radiation from perfectly expanded jets, Tam [1975].

While these early supersonic jet noise theories were based on shadowgraphic evi-
dence and near field acoustic measurements. It still remained to experimentally establish
the link between large scale coherent structures and the noise radiation from supersonic
shock free jets. The difficulty was in the inability of delicate instruments to measure the
stability characteristics in supersonic jet shear layers. Some of these problems were over-
come by conducting measurements in a low Reynolds number environment (McLaughlin
et al. [1975, 1977) and Morrison and McLaughlin [1979, 1980]) and later extending
measurements to moderate Reynolds numbers (Troutt and McLaughlin [1982]). At low
Reynolds number, it was clearly established that the rapid growth of instability waves
and their decay near the end of the potential core contributed to the major portion of
the sound radiated. Initial instability wave growth rates and phase velocities agreed
with linear theory and spectra peaks, sharply defined, had Strouhal numbers that ap-
propriately agreed with the instability wave source. As Reynolds number increased, the
spectra broadened but still peaked at the appropriate Strouhal numbers. Also, the in-
stability wave characteristics still agreed with theory. Results at high Reynolds number
were then inferred as being due to the same mechanism. While for the most part these
measurements showed that the instability wave noise radiators traveled with phase ve-
locities that were supersonic relative to the ambient speed of sound, there were examples
of subsonic traveling waves that radiated noise from low Mach number jets. Though the
experimental results were not always clearly understood at the time, they did lead to
refinements to the models given in Tam [1975}, Morris and Tam [1977], Tam and Morris
[1980) and Tam and Burton [1984a]. Most of this latter history was recently summarized
in Tam [1991).

1.2 Axisymmetric Coaxial Jets

The interest in the measurement of the noise radiated from coaxial jets increased
as the by-pass jet engine was introduced as an alternative propulsion system to the
noisy turbojet engine. Early results were inconclusive as to whether or not any varia-
tion in the outer stream velocity had any affect on the radiated noise, Greatrex [1961].
Kantarges and Cawthorn [1964] found that a cold outer stream added to a cold inner
stream increased the noise. While a cold outer stream added to a hot inner stream
seemed to have little impact on the noise. With the consensus that the noise reduction
in by-pass engines was due to lower velocities at the same mass flow compared to single
jets, Williams et al. [1969] measured noise reductions in cold coaxial jets at constant
thrust. In addition to the noise reduction noted earlier, these results included reductions
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due to the decrease in the mean shear of the combined flow. It is interesting to note that
at constant thrust, the maximum reduction occurred at about U2 /U 1= 1. Alternatively,
by simply increasing the outer velocity U2 for a fixed inner velocity U 1’ the maximum
noise reduction occurred at a velocity ratio of 0.5. This apparent noise reduction was
confirmed by Eldred et al. [1971) and Dahlen [1972]. The latter noted reductions in
high frequency noise including the peak of the jet noise spectrum and an increase in low
frequency noise. Olsen and Friedman [1974] conducted a wide ranging study of coaxial
nozzles and flow conditions. Their results showed minimum noise levels at velocity ratios
of 0.4 to 0.5 with variations apparently due to changing area ratios. The shape of the
far field spectra from subsonic coaxial jets were basically the same as single jets. Hence,
only the peak frequency and level needed to be correlated with velocity ratio and area
ratio. Thus, for subsonic jets, there appeared to be lower noise benefits in using coaxial
jets with normal velocity profiles.

The apparent noise reduction benefits of two stream coaxial jets operating in
subsonic conditions was convincing enough to look for similar benefits under supersonic
conditions. Dosanjh and his colleagues conducted an extensive experimental study of
supersonic coaxial jets. Using small scale nozzles, Dosanjh et al. [1969, 1970} and Yu
and Dosanjh [1971] optically observed, measured, and documented the existence of a
minimum noise condition for shock containing coaxial jets. They found that when the
outer nozzle pressure ratio was fixed above critical, the inner nozzle pressure ratio could
be increased from no flow conditions to some point where the measured overall sound
power level was a minimum less than the outer jet alone. For higher inner pressure ratios,
the noise increased. This minimum noise condition always occurred for inner nozzle
pressure ratios less than the outer nozzle pressure ratios indicating that the coaxial jet
operated with an initial inverted velocity profile. The optical shadowgraphs showed that
the outer stream repetitive shock structure was destroyed at the minimum noise condition
and replaced by a composite shock structure just downstream of the nozzle exit. Hence,
the overall noise reduction was primarily due to a decrease in shock associated noise.
The minimum noise condition depended on noz:le geometry with inner nozzle pressure
ratios varying from 2.22 to 2.63.

Further studies on a larger scale coaxial supersonic nozzle were conducted and
the results are detailed in Ahuja [1976], Bassiouni [1976] and Bhutiani {1976]. They
confirmed the existence of a minimum noise ccndition and noted that downstream of
the composite shock structure, the shocks were very weak or nonexistent indicating that
the flow was similar to a properly expanded flow. Noise reductions were measured at all
frequencies and at all angles. This would mean that not only was shock noise reduced,
which dominates in the upstream direction, but that mixing noise was reduced as well,
which dominates in the downstream direction. It was also found that directivity patterns
could be changed by the choice of pressure and temperature operating conditions.
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Tanna et al. [1979] conducted measurements of shock-free coaxial jets with in-
verted velocity profiles to study the effects of profile shaping in jet mixing noise. In
addition, care was taken in choosing initial velocity and temperature conditions along
with exit area in order to compare results on a constant thrust, mass flow, and exit
area basis to a fully mixed equivalent single jet or reference jet. They found that high
frequency noise increased at all angles and that low frequency noise decreased at an-
gles closer to the jet exit axis. These changes were relative to the reference jet and
they became larger as the velocity ratio increased above 1. Far field spectra remained
largely unchanged by higher temperature ratios for a coaxial jet with both velocities the
same. Since the far field spectra were peaking at the lower frequencies, the overall sound
pressure levels were quieter for U2/ U1 > 1 at smaller angles and noisier at 90 degrees.
The higher frequency noise was generated primarily from the outer shear layer before
the streams merged. As U2/ U1 increased, the outer shear layer had a larger velocity
difference to ambient resulting in higher eddy convection velocities, higher source veloc-
ities, and more noise. Conversely, the lower frequency noise was generated downstream
of merging where the velocities were lower, resulting in less noise. Similar results were
measured by Maus et al. [1980]. They concluded that the rapid decay of the maximum
mean velocity in inverted velocity profile jets was a prominent reason for noise reduction
compared to the reference jet.

After examining the shock-free, inverted profile coaxial jet data, Tanna [1980] re-
examined some of the normal velocity profile data, discussed earlier, and compared the
results to a reference jet at the same thrust, mass flow, and exit area. His conclusion was
simply that normal profile coaxial jets, with both inner stream velocity and temperature
greater than the outer stream, are noisier than the reference jet. A systematic study of
normal velocity profile jets conducted by Tanna and Morris [1985] using the approach
of Tanna et al. [1979] confirmed this conclusion. Given the constraint of constant exit
area, one stream will always have a velocity higher than the reference jet in order to
maintain constant total thrust and mass flow. Since the maximum velocity of a normal
profile jet persists longer than the maximum velocity of an inverted profile jet, then
in a Lighthill sense the normal velocity profile jet would generate more noise than the
inverted profile jet.

The experimental work on coaxial jets was continued by Tanna et al. [1985] into
the supersonic regime. The converging nozzles were operated above critical pressure
ratios resulting in underexpanded, shock-containing jet flows. They also defined a min-
imum noise condition based on overall sound pressure level measurements at upstream
angles where shock associated noise dominates. For a fixed outer nozzle pressure ra-
tio above critical, minimum noise was found when the inner nozzle pressure ratio was
slightly above critical at about 1.9. Depending on the initial velocities and temperatures
of the two jet streams, this condition was found to hold for both inverted velocity profiles
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and normal velocity profiles. Tam and Tanna [1985] discussed the differences with their
basically fixed minimum noise condition inner nozzle pressure ratio and the varying inner
nozzle pressure ratio of Dosanjh et al. They concluded that the differences are due to
nozzle shape, definition of minimum noise, and interpretation of the phenomena.

With the shock associated noise virtually eliminated and schlieren photographs
showing the destruction of the outer jet repetitive shock structure at minimum noise
conditions, Tanna et al. [1985] measured the remaining mixing noise at downstream
angles to the jet axis. Test conditions of constant thrust, mass flow, and exit area, along
with the added condition that the inner stream be slightly supersonic to achieve minimum
noise due to shocks, were used to set the coaxial jet initial velocities and temperatures.
As was found for shock-free coaxial jets, normal velocity profile jets were noisier than
the reference jet and inverted velocity profile jets were quieter based on overall sound
pressure level measurements at 30 degrees to the jet axis.

Much of the data from reports discussed above have been used to develop mod-
els for predicting noise radiation from coaxial jets. Noise measurements from different
nozzles at different conditions provided data for empirical models, Stone [1977], Stone
et al. [1979] and Stone et al. [1983], and correlations, Pao [1979]. A more theoretical ap-
proach based on turbulence modeling and Lighthill’s independent noise producing eddies
was proposed by Chen [1976]. A turbulence model was used in calculating mean flow
properties that were the only quantities needed for the acoustic calculations. A more
elaborate theoretical model was proposed by Balsa and Gliebe [1977] and Gliebe and
Balsa [1978]. They used turbulence modeling to predict both mean flow and turbulence
variables. With a model for the acoustic source of an elemental jet volume based on lo-
cal turbulence properties, these results were used in Lilley’s equation to predict far field
radiated noise levels and spectra. Gliebe et al. [1991] recently summarized this model
and made comparisons to various jet noise suppression nozzles. These models tend to
agree favorably with measured data since they all contain factors that were derived from
measured data. As an alternative to these models, we calculate noise radiation from
instability waves propagating in the shear layers of supersonic coaxial jets.

1.3 Theoretical Considerations

Instability waves have been established as noise generators in supersonic jets when
they have phase velocities that are supersonic relative to ambient. When the jet is
perfectly expanded, this mixing noise has a radiation pattern with a dominant peak in
the downstream arc of the jet. Even when shocks are present in the jet flow, the noise
from the jet that radiates into the downstream arc is primarily due to mixing; whereas,
the broadband noise associated with shocks dominates in the upstream arc of the jet.
Extensive measurements have shown this for single jets, Tanna [1977], and for coaxial
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jets, Tanna et al. [1981]. Hence to a first approximation, we could conduct an analysis of
the mixing noise in the region where it dominates even if shocks were present in the flow.
However, since this is a first analysis of the instability wave noise generation model in
supersonic coaxial jets, we assume the coaxial jets are perfectly expanded or, if not, the
jet operating conditions are set for minimum noise where the flow has the characteristics
of perfect expansion downstream of a composite shock structure near the nozzle. This
simplifies the analysis and allows us to concentrate on profile shaping as a means to
further reduce the mixing noise. Many of the ideas behind this analytical approach are
given in the references already cited. We use these ideas in the extension of this approach
to mixing noise generation from supersonic coaxial jets. An extension of this analysis
to include the effects of a weak shock structure and the generation of broadband shock
associated noise could conceivably follow the approaches for mean flow in Tam et al.
[1985] and for shock noise in Tam [1987].

To begin the analysis, the jet flow is decomposed into three parts: mean flow,
instability waves, and fine scale turbulence (Liu [1974]). At the nozzle exit, the kinetic
energy in the mean flow dominates the energy balance between the three components.
Energy flows from the mean flow into the instability waves and into the fine scale turbu-
lence with the fine scale turbulence being the mechanism that primarily dissipates the
energy. The interaction between these components is complicated and simplifications
are made to enable a solution to be obtained. In general, the interaction between the
mean flow and the instability waves has energy transfers in both directions. As the
instability waves grow, they extract energy from the mean flow. In turn, their growth
modifies the mean flow, transferring energy back to the mean flow, which again affects
the instability wave growth rates, and so on. In addition, the energy transfer to the
fine scale turbulence acts to diffuse the mean flow and decrease instability wave growth
rates. We assume that these effects on the mean flow are included in a separate mean
flow calculation. Chapter 2 discusses the mean flow calculation using a turbulence model
that takes into account the modification to the mean flow by the instability waves and
the dissipation caused by the fine scale turbulence. The model includes the necessary
condition that a coaxial jet initially has two shear layers with differing length scales. As
the flow progresses downstream, the shear layers grow in width and eventually merge
until a single fully developed jet shear layer exists.

In Chapter 3, the instability waves are assumed to be governed by the linearized,
inviscid, compressible equations of motion. As noted earlier, thin free shear layers con-
taining an inflection point in the mean velocity profile are inherently unstable even in
the absence of viscosity. The wave initially grows rapidly. As the shear layer grows,
the instability wave growth rate decreases. Eventually, the shear layer is too thick to
support unstable waves and the wave amplitude decreases until it disappears. The effect
of fine scale turbulence on the instability waves and the interaction between instability
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waves and other disturbance modes are assumed to be less important than the spread-
ing of the mean flow in controlling growth and decay rates of an instability wave. Fine
scale turbulence would dissipate the energy in the instability waves; a process not clearly
understood. Previously, the fine scale turbulence was included as an effect on diffusing
the mean flow which, in turn, effects instability wave growth and decay. Hence, even if
the instability wave is modeled inviscidly, it is indirectly affected by the fine scale tur-
bulence through the mean flow. Its direct effect is neglected. The interaction between
instability waves generates harmonics. In our model where a single frequency wave is
followed through its spatial growth and decay, at maximum growth its harmonics are still
small and have little impact on the noise generated (Tam and Burton [1984a)); hence,
these interactions are neglected, too. In addition, the analysis assumes that the distur-
bances are small in order to linearize the equations resulting in no interactions between
the instability waves and other disturbance modes such as those due to temperature
fluctuations.

For slowly diverging jet flows, two solutions are created that apply to separate but
overlapping regions. The inner region includes the jet flow and the immediate region just
outside the jet. Since the flow grows slowly in the axial direction, the rates of change in
the axial direction are much less than those in the radial direction. In effect, the flow is
nearly constant over the region that significant changes take place in the radial direction.
This weak coupling between length scales is used by the method of multiple scales to
develop an asymptotic expansion of the governing equations. To lowest order, the inner
solution is the locally linear instability wave. The higher order solutions obtained after
using the method of variation of parameters accounts for the effect of the slowly diverging
mean flow.

The instability waves in the inviscid model are inflectional instabilities of the
Kelvin-Helmholtz type. They have been shown to be the dominant instabilities in the
jets of interest in this study (Tam et al. [1992], Seiner et al. [1993]). As shown in Tam
and Hu [1989], there are other waves traveling in the shear layer that have subsonic and
supersonic phase velocities. In the inviscid limi:, the Kelvin-Helmholtz waves are ana-
lytically continued from growing to damped waves. These other waves become neutrally
stable without viscosity and do not become damped downstream. Since they do not
contribute to peak noise, they are not considered here. The damped Kelvin-Helmholtz
waves are found for both subsonic and supersoric phase velocities as described in Tam
and Burton [1984b]. This approach removes the boundedness condition for the inner
solution at infinity where the inner solution is not valid anyway, Tam and Morris [1980].

In the outer region, which slightly overlaps the inner region, the governing equa-
tions are controlling disturbances that are acoustic in nature. The acoustic disturbances
have the same length scales in all directions; hence, all coordinates are treated equally.
The outer solution is created in a form that allows it to be asymptotically matched to
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the inner solution in the overlap region. These matched asymptotic expansions provide
the outer boundary condition for the inner solution and the inner boundary condition
to the outer solution. To lowest order, we get the solution to the near field pressure dis-
turbances just outside the jet. This solution is extended to the far field using stationary
phase analysis to obtain the directivity pattern for the jet. The full analysis for this
instability wave noise generation model involves a large amount of algebraic manipula-
tion. This paper provides an outline of the solution in Chapter 3 with some additional
algebraic details in related appendices.

The analytical and numerical analysis provided the means to conduct the para-
metric study of supersonic coaxial jets presented in Chapter 4. We chose a reference
single stream jet with operating conditions that would be typical for a supersonic trans-
port aircraft engine exhaust. From these conditions, we defined the operating conditions
for supersonic coaxial jets that have the same total thrust, total mass flow, and total exit
area as the reference jet. The study of normal velocity profile jets allowed variations in
both velocity ratio and temperature ratio between the two jet streams to be controlled
separately. Thus, the variation in velocity ratio could be studied with the temperature
ratio fixed and vice versa. The study of inverted velocity profile jets was conducted with
operating conditions set for minimum noise. Temperature ratios, in this case, could not
be varied independent of the velocity ratio. Once the operating conditions were defined,
all the numerical results for each case were dependent upon them. The calculation of far
field directivity and the near field pressure disturbances depended on the calculation of
the instability waves in the different shear layers that depended on the calculation of the
mean flow that used the operating conditions to define the initial flow profiles. Chapter
4 discusses this train of dependencies and the final impact on the noise generated at se-
lected frequencies. Finally, Chapter 5 discusses the conclusions that can be drawn from
this study and makes suggestions for further work.



12

Chapter 2

CALCULATION OF THE
MEAN FLOW DEVELOPMENT IN A
COMPRESSIBLE COAXIAL JET

This chapter discusses the methodology used to calculate the mean flow devel-
opment of a compressible, coaxial jet. As illustrated in Figure 2.1, the mean flow from
a coaxial jet nozzle can have either a normal velocity profile or an inverted velocity
profile. The normal velocity profile jet is characterized by a high velocity inner stream
surrounded by a lower velocity outer stream, Figure 2.1(a). For the inverted velocity
profile jet, the inner stream has the lower velocity and it is surrounded by the higher
velocity outer stream, Figure 2.1(b). Both subscnic and supersonic conditions are calcu-
lated. When the jet exit conditions are supersonic, the jet static pressure is matched to
the ambient pressure; hence, the flow is perfectly expanded. The approach is numerical
with many simplifying assumptions used in the governing equations. These assumptions
also lead to the need for a turbulence model to close the set of governing equations.
It should be noted that the goal of this part of the work is to calculate the mean flow
properties of a coaxial jet, either with a normal initial velocity profile or with an inverted
initial velocity profile, that expands and merges in an orderly fashion in the downstream
axial direction. The absolute accuracy of the calculated mean flows compared to any
particular set of measured data is secondary to whether or not the calculated results bear
a strong qualitative resemblance to the behavior of coaxial jet flows. In practice, the
predictions, when compared to available measurements, show reasonable quantitative
agreement.

For the most part, in the past, the calculation of instability waves in a single
axisymmetric jet have used analytic functions to characterize the mean flow. These ana-
lytic functions have been based on results from experimental measurements where data
were plotted using local similarity variables. Examples of this approach include the mea-
surements of Lau et al. [1979] whose data were fitted by an error function profile, Cohen
and Wygnanski [1987] who fitted data to a series of hyperbolic tangent functions, to
add corrections to the classical hyperbolic tangent profile, and Morrison and McLaugh-
lin [1980] who fitted data to a half-Gaussian profile. Michalke [1984] summarized the
use of different analytic functions in the calculation of instability waves. The measured
data typically include only velocity profile results which are sufficient for incompressible
instability wave calculations. When compressibility is important, the instability wave
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calculations require that either the temperature or the density profile be specified. Of-
ten, the approximation has been made that allows the Crocco Relation to be used. This
defines the temperature or density profile to be a function of the velocity. See, for exam-
ple, Schlichting [1979], White [1974], and Michalke [1984). Example velocity and density
profiles for subsonic and supersonic single jets are shown in Figures 2.2 and 2.3. These
figures show numerical results, using the procedure to be described in this chapter, com-
pared to calculated hyperbolic tangent velocity profiles (Michalke [1984] Eq. 9) and the
corresponding density profile from the Crocco Relation. Good comparisons are made
for both isothermal jets (Figure 2.2) and hot jets (Figure 2.3) showing the usefulness of
the Crocco Relation in single jet instability wave calculations. Thus, with mean profile
information analytically defined, the mean profile variables and all their derivatives are
available at all points in the radial direction for the numerical calculation of instability
wave characteristics. Furthermore, these analytic functions are continuous into the com-
plex plane which allows the calculation of damped inviscid waves as described in Tam
and Morris [1980]. (Further details on damped inviscid wave calculations will be given
later.) Thus, the use of analytic functions to describe the mean flow has simplified the
study of single jet instability waves.

When it comes to a coaxial jet, it is not clear how to properly apply analytic
functions to describe the profile at all axial locations. For a single supersonic jet, Tam and
Burton [1984a] used a generalized half-Gaussian function to describe the mean velocity
at all axial locations. The function parameters, centerline velocity, core radius, and
half-width of the mixing region, were defined by cubic spline fits to measured data. The
density profile was found by keeping the total temperature constant. This approach
was possible due to the availability of measured data. There is little measured data
for coaxial jets, especially with supersonic conditions, that would allow an analytical
description to be made at all axial locations including the merging region of a normal
profile and an inverted profile into a single jet. Miles [1986, 1987) calculated instability
waves for normal profile coaxial jets using analytic functions to fit velocity profiles at
selected axial locations where measurements were available from a subsonic jet. Such
an approach did not produce useful information on the axial dependence of the function
parameters. Thus, profiles could not be generated at axial locations where measurements
were not made. Furthermore, whereas temperature profiles have been measured in a
subsonic jet, they are not typically measured in a supersonic jet. So, even though
velocity measurements may be available for coaxial jets with supersonic conditions, it
is doubtful that Crocco’s Relation could provide the appropriate temperature profiles
for either normal or inverted conditions. Thus, the decision was made to generate mean
profiles for coaxial jets numerically. Morris [1980] and Morris and Baltas [1981] calculated
instability waves using numerically generated velocity profiles for a single incompressible
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Figure 2.1. Ilustrations of coaxial jet flows. (a) normal velocity profile coaxial jet; (b)
inverted velocity profile coaxial jet
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jet. So it is not new to use numerically generated profiles. The extension here is to
include compressibility effects into the spreading and merging of a coaxial jet.

2.1 Equations for Compressible Flow

The compressible flow of a free jet is governed by the continuity, momentum, en-
ergy, and state equations. To solve these equations numerically in their original unsteady
form would overly complicate our problem. Hence, following the discussion in Anderson
et al. [1984], we assume the flow development of an axisymmetric free jet is governed by
the boundary layer equations for compressible flow that have been Reynolds averaged;
since the flow is also assumed to be turbulent. The flow variables are decomposed into a
time averaged or mean value part and a fluctuating or turbulent part. (Eg.,p=p+ p
where the overbar denotes the time averaged part and the prime denotes the fluctuating
part.) The following approximations are used:

1. The mean flow is steady.

2. The mean pressure is constant in the jet and equal to ambient pressure.

3. u>>vand§¢>> 365
4. p’u’ << pu and pIH' << pH.

The equations in axisymmetric coordinates reduce to:

continuity:
0 7}
3arPu) + 3. (rp0) =0 (2.1)
momentum:
Ou _Ou 10 ou T
pua—z+pv-a—r =25 r(pg; —-puv)] (2.2)
energy:

O0H _6H 10 u 0H ] 1 ou 71
pu-a—-+pv or  ror {Pra —pcva’+u[(1—PI) Koy — P47 }] (2:3)
where 7 is a mass averaged quantity defined as
~ 1/ 77
7= i po+pv ). (2.4)

For simplicity, overbars have not been used on mean values in (2.1) to (2.3). The
definitions of all the symbols are found in the Symbol List.
We assume a perfect gas. Thus, the state equation is:
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state:
p= pRgT (2.5)

Also, the laminar viscosity is related to temperature according to Sutherland’s Law.
3/2
T T +S
wen(7) Fi5 29
o 1

In (2.2) and (2.3), the Reynolds stress term —pu'v’ and the Reynolds heat flux
term -pcpv’T’ are undefined. These terms must be modeled in order to solve the sys-
tem of equations. In looking ahead to the difficulties in defining a turbulence model that
would work for a supersonic coaxial jet with normal or inverted initial velocity profiles
and streams of different temperature (An example of the difficulties in turbulence mod-
eling for single stream supersonic jets is found in Dash et al. [1992].), it was decided to
use the most basic model, namely the mixing length model, for turbulence. Any tur-
bulence model chosen for these calculations would require modification and calibration
to obtain reasonable results for both normal and inverted profile coaxial jets. Since, as
mentioned previously, this study was not an attempt, primarily, to make accurate mean
flow predictions, the mixing length model represented the turbulent stress from which an
effective viscosity was defined. Through the use of a turbulent Prandtl number to relate
eddy diffusivities for heat and momentum, an effective Prandtl number was calculated
from the effective viscosity.

In the mixing length model, the Reynolds stress term is written as (Schlichting
[1979], Anderson et al. [1984])

77 ou
—pUY = ppa (2.7)
and the heat flux term as ¢ pi T
—pe o7 = 2L
pe,v T = Pr, Or . (2.8)

Substituting g2.7) and (2.8) into (2.2) and (2.3) and using the definition for total enthalpy
H= cpT + u” /2, we get for momentum and energy:

Oou _Ou 18 Ou
P+ P = 15 ) (29)
OH . _OH 10 [ Mg oH Mg\ Bu
Pas TP = T ar rPreﬁ. ar 7 (ﬂeff a Preﬂ) “or (2.10)

where
Hog = B+ ity (2.11)
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and “
b 14 -
T = .

eff ~ 1 1 A
Pt P

(2.12)

Equations (2.9) and (2.10) are of the same form as those found in Pai [1954] and are the
basis for the numerical work of Patankar and Spalding [1970] and Crawford and Kays
[1976).

With the turbulent Prandtl number PrT essentially constant for free jet calcula-
tions (See Schlichting [1979], NASA [1972], Anderson et al. [1984], Crawford and Kays
[1976]), the mixing length model is embodied in the turbulent viscosity;

2|0u
or

hp =P (c,c ) (2.13)

where £ is a characteristic length scale and C' and C are the mixing length constants;
however, for this model, they are functions of the ﬂow conditions as described presently.

Tt is known that the growth of a shear layer depends on the flow conditions at
the shear layer edges with velocities and densities of the two streams being of primary
interest. (See Schlichting [1979], Birch and Eggers in NASA [1972], Brown and Roshko
[1974], Papamoschou and Roshko [1988]). This dependence occurs whether the flow
is compressible or incompressible. Papamoschou and Roshko [1988] and others have
normalized the compressible shear layer growth rate by an incompressible growth rate
value at the same edge conditions in an attempt to separate out purely compressible
effects. This followed from work by Brown and Roshko [1974] that showed the effects of
different velocity and density edge conditions on shear layer growth for incompressible
flows. Thus, in order to incorporate the effects of edge conditions into the mixing length
model to get the proper shear layer growth, two factors have been developed that depend
on the flow conditions; one for incompressible conditions and the other for compressible
conditions.

The factor C is the incompressible part of the mixing length constant. It depends
on the velocity ratm r= U2 JU 1 and the density ratio s = Py / Py between the two streams
either side of the shear layer. Equations for the expected vort1c1ty thickness growth rate
have been developed by many investigators from experimental evidence. Thus, given
that we know the vorticity thickness growth rate for a fixed r and s, we adjusted the
C, factor (C set to 1) until the calculated initial vorticity thickness growth rate of a
smgle jet a.greed with the predicted value. Continuing this process for a range of r and
s values resulted in a series of calibration curves for C A more detailed discussion is
given in Appendix A.

The C.. factor is the compressible part of the mixing length constant. Its purpose
is to decrease the growth of the shear layer as compressibility effects become important.
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It depends on a Mach number in a relative frame of reference convecting with the real
phase speed of a growing disturbance in the shear layer. This convected Mach number
depends on r and s and on the Mach number of one of the streams. Experimentalists have
used the convected Mach number in attempts to correlate normalized measured growth
rates of compressible shear layers. We developed an equation that fits this correlated
data in order to predict shear layer growth rates for given flow conditions. Thus, we
proceeded to calibrate the C2 factor given that C"1 is allowed to take on its previously
calibrated value for the given r and s. C2 was adjusted until the calculated initial
vorticity thickness growth rate agreed with the predicted value. For this case, a single
calibrating curve was generated. Again, details are discussed in Appendix A.

There are a few different choices for the characteristic length scale for a jet shear
layer. Since the flow is turbulent and the motion is dominated by large structures or
instability waves, an appropriate characteristic length scale would be (Brown and Roshko

[1974] and Morris [1976])
AU

=20
ou/or]__

(2.14)
£ defined in this way can be interpreted as a vorticity thickness. If necessary, it can be
related to other length scales by using an appropriate functional shape for the velocity
profile. For example, £ = .978b where b is defined as the shear layer width from the
location where (u — U2)/AU = .9 to the location where (u — U2)/AU = .1 and u is
defined by an error function.

2.1.1 Numerical Formulation

Many numerical techniques are available for the solution of the boundary layer
equations. (See Anderson et al. [1984] and White [1974]). Any one of which could
have provided adequate mean flow results; but our criterion for mean flow calculations
dictated that the mean flow results be sufficiently resolved in order to be used in the
instability wave calculations to be discussed later. Furthermore, we wished not to be
bothered with any numerical calculation of the ¥ term in (2.9) and (2.10). Hence, we
initially followed the stream function approach given by Patankar and Spalding [1970]
and Crawford and Kays [1976].

Equations (2.9) and (2.10) are transformed to stream function coordinates using
ov

ToU = — and rp¥= ~%a (2.15)
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These equations insure that continuity (2.1) is satisfied. The transformation from (z,71)
coordinates to (z, ¥) coordinates is completed by using

o_8 008 _o_ 0
oz 98z 0OV 0z = oz ”"’aw
i) &0z 0 0¥ _ 0

o~ dzor Tovar 10¥

in (2.9) and (2.10) to get

ou 2 ou

_3 = a‘I’ [r eﬁ.—a‘l’ (2'16)
8II_ 3|2 ﬂ O0H a2 2 ou
9z 6\1![ PUBr aw]+a\1r Tpu ("eff Pr, )aw] (2.17)

These equations can be differenced in a variety of ways; explicitly as in Madni and
Pletcher [1975], implicitly on an evenly spaced ¥—grid as in Donovan and Todd [1967],
or transformed to a normalized ¥—grid and implicitly differenced as in Patankar and
Spalding [1970]. Each of these numerical methods were found to have problems. The
explicit DuFort-Frankel method, Madni and Pletcher [1975], bad stability problems.
The implicit Crank-Nicolson method using an evenly spaced ¥—grid, Donovan and Todd
[1967], could not provide enough resolution at the outer low speed edges of the jet. And
Patankar and Spalding’s method had problems with entrainment boundary conditions
at the outer edge. Each of these problems were overcome by using fully implicit differ-
encing and what is considered to be natural grid stretching and natural outer boundary
entrainment. By choosing a fully implicit method, the numerical problem is inherently
stable. The problem of grid resolution is solved by using an evenly spaced r—grid. The
outer boundary condition will be discussed later.

The choice of an evenly spaced r—grid results in an unevenly spaced ¥-grid. In
essence, the ¥—grid is stretched, but in a manner that is natural to the ¥—grid with more
grid points at the outer edge where finer grid spacing is desired. From (2.15)

d¥ = rpudr.

Integrating this across one grid spacing

k k
/ d¥ = rpudr
k-1 k-1

we get 1
AV, = v, - LI 3 [(rpu)k + (rpu)k_l] Ar (2.18)



22

after using the trapezoidal rule. One consequence of (2.18) is that u cannot be zero
outside the jet or A¥ would go to zero. To get close to quiescent outer conditions, the
free stream velocity was set to 1% of the initial highest velocity.

Writing (2.16) as

ou 9 ou
% =59 [Aa_w (2.19)
where 0
A=r"pup o

we implicitly difference this momentum equation using the grid shown in Figure 2.4 as
follows:

Yitrk " ik _ 2 _k_-&_ Yk~ %1
Az AV, +AV, k+% X7 k—% AV o
M

k+1 k
(2.20)

The A coefficient is the average of adjacent grid values

Ay = ; (A +Ak+1)'

Collecting terms, equation (2.20) is arranged into tridiagonal form

+ - _
{ A A gnt (1 M R e Ak—%) - Ap Ay k+1} a1 ik

(2.21)
where
AT = 2Az‘ : (2.22)
(A'I'k+1 + M’k) Av,
AT = 24z (2.23)

* (A‘I’k+1 +Aav,) AV, .

Equation (2.17) is differenced in the same manner. The resulting tridiagonal
equation is
{‘Ak Dy 1= 8 By Hey t (A Dt 2D %)
+ -—
+ (1 +A B, 1+A B ) H, A D, v, ., —-AYB ,H }
kEZk+d T Tk Tk-3 A S et % e S5 Y P

=H,, (2.24)
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Figure 2.4. Stream function grid for mean flow calculations.
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where i
B=r? pu Fdf-’
l.eﬂ'
and

2 2 Feff
D= - ==L,
T ey (”eﬁ' Pr ﬁ‘)
2.1.2 Boundary Conditions

Since the problem is axisymmetric, a symmetry boundary condition is enforced

at r =0, k = 1; that is
ou OH

v~ v
The right hand side of (2.19) is differenced using half the grid spacing at the edge. (See
Figure 2.4)

=0. (2.25)

i1 "% 1 { Aa_"] _ [A?ﬁ] }
Az A‘I’2/2 ov j+1’1+% 0¥lit1,1

From the boundary condition (2.25), the (5 + 1,1) term on the right side is zero. The
final tridiagonal form is

2Az 2Azx
14+ —54 —cA =u.,. 2.26
{ ( A‘1,2 1+%) A\It2 1+3%2 }J+1 4.1 (2.26)

Similarly, we get for energy

2Azx 2Az
——D.  q1u, +|1+4—=B H

2Az 2Az
- —5D —=B, 18, =H... 2.27
2 2 j+1

The outer boundary condition is simply that the « and H values must equal free
stream conditions. To put it algebraically,

it N1 T YN T %o

Bpni = Hj =8y (2.28)
This also may be viewed as saying that the derivative in the z—direction is zero at
the outer edge. The consequence of this type of boundary condition is that the flow,
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expanding outward due to diffusion, can never reach the outer grid boundary or the
calculations will be in error. The way this is handled is discussed in the next section.

2.1.3 Methodology of Numerical Solution

Equations (2.21), (2.24), (2.26), (2.27), and (2.28) when put together create a 2x2
block tridiagonal system for k = 1 to N + 1 where N is the number of grid spacings.
The system can be solved by standard block tridiagonal routines such as that given
in Anderson et al. [1984]. The coefficients A, B, and C are unknown at the j+ 1 location
since they are functions of the unknowns u +1k and H. L Consequently, iterations
must be made to complete the solution for each axial step The procedure is as follows:

1. Guess uj+1,lc and Hj+1,k'

If = 1, then use the initial conditions.

Yok = Yk
Hy, =H,

For j > 1, we can extrapolate from previous solutions.

uj+1’k =2u ik~ uj—l,lc
Hivrp =286 = Hj 14

2. Solve for j + 1 values of p, e Preﬁ..
3. Calculate the A‘Ilj 1k grid using equation (2.18).

4. Solve the block tridiagonal system for new values of Y1k and Hj +LE Also, new
values of p, Hog Pr off 3TC calculated. , ’

5. If the difference between the new solution and the previous solution is smaller
than some convergence criterion, then this axial step is completed. Otherwise, the
iteration process continues at step 3.

To insure, as mentioned previously, that the outer boundary condition is not
compromised by the expanding flow, the grid must be large enough in the radial direction
to encompass the flow. Rather than making the grid so large that the flow is encompassed
at all axial locations, the outer edge of the initial grid is much closer to the outer edge
of the jet, typically the grid ends at twice the outer radius of the initial jet. As the flow
expands downstream, the outer edge of the jet flow is tracked until it is within some
arbitrary distance from the outer edge of the grid. At which time, more grid points are
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added to the solution. All the variables at the new grid points take on the free stream
values that are assumed to always exist outside the grid. As the shear layer of the jet
expands, it becomes possible to increase the Ar—grid spacing since less grid points are
necessary to well define the shear layer as was initially necessary for a thin shear layer.
Thus, we do not simply continue to add grid points as the flow expands, but we can,
from time to time, reduce the number of grid points by increasing the grid spacing.
It was best to simply double the grid spacing so that the extrapolated guess for new
variables occurred along constant grid lines in the z-direction. Thus, no interpolation
Was necessary.

2.2 Single Jet Examples

Before discussing the modifications to the mixing length model for the coaxial
jet, we first look at some results from single jet examples to see how well the calibrated
mixing length model works.

Figure 2.5 compares numerical calculations to data taken from Zaman [1986]
for a subsonic, M = 0.5 axisymmetric jet. The axial variation of centerline velocity
is shown in Figure 2.5(a). The calculations show good comparison to data and to an
equation for centerline velocity from Witze [1974] based on correlating many different
jet measurements. Figure 2.5(b) shows the growth of jet half velocity width and the
ratio of jet half velocity width to momentum thickness. The calculations underpredict
the spread of the jet as defined by the half velocity width.

Calculations for a Mach 1.37 jet are shown in Figure 2.6. The centerline velocity
data are taken from Lau et al. [1979] (Figure 2.6(a)) and the half velocity point data
is from Lau [1981] (Figure 2.6(b)). The calculated core region spreads at the measured
rate though the measured core length is slightly shorter than predicted.

Results for a higher speed jet, Mach 2.22, are shown in Figure 2.7. The comparison
for centerline velocity and jet half velocity poin: is made with data from Eggers [1966].
The calculations underpredict the spreading of the jet. These results show a problem
that exists with using the compressible calibration curve in Figure A.3. Any jet data
results that lie above the calibration curve will have its growth underpredicted by the
calculations. This is the case for the initial spreading rate measured by Eggers. The
Lau data, shown in Figure 2.6 lies much closer to the calibration curve; hence, there
is better agreement between calculated and measured jet spreading. The comparison
with Zaman’s data could also be affected by this problem. As with many other tries at
turbulence modeling, the results are only as gcod as the calibration and it is difficult
to generally apply the model to varied problems. The turbulence model was calibrated
to match growth rates in the initial core region of a jet, the region of most importance
to growing instabilities. In the downstream region, the jet is a wide axisymmetric shear
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Figure 2.7. Comparison of supersonic single jet calculations to measured data. Data
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layer and the current turbulence model, based on thin shear layer results, provides less
representative growth rates.

The final comparison is for a single jet in a moving stream. These results are
important to the future consideration of coaxial flow jets in the effect of Mach number
and the effect of velocity ratio on jet spreading characteristics. Figure 2.8(a) shows the
effect of velocity ratio on the centerline velocity. The data are from Morris [1976]. The
good agreement shows that the turbulence model has the jet spreading less and increasing
the core length as the velocity ratio increases from .096 to .497. The Mach number effect
at a velocity ratio of about .1 is shown in Figure 2.8(b). Again, there is good agreement
as the Mach number increases from .47 to 1.67. Hence, the turbulence model allows the
calculated jet behavior to mimic the expected jet behavior for a compressible jet in a
co-flowing stream.

2.3 Coaxial Jet Mixing Length Model

Initially, a coaxial jet, either with an initial normal velocity profile or an inverted
velocity profile, has two distinct shear layers with uniform flow conditions at both edges
of both shear layers. As a result, the mixing length model, equation (2.13), gives separate
constant values C C and £ for each shear layer. The C and C factors depend on
the velocity ratio, the dens1ty ratio, and the convected Ma.ch number determined from
the separate edge conditions. The characteristic length £ is determined for each shear
layer from (2.14). The turbulent viscosity Hep is then calculated across the coaxial jet
using local va.lues of p and |9u/0r|. Note tha.t the separate shear layers have different
constants (C Z) so that at some point between the two shear layers, the B profile
must switch ﬁ'om one set of constants to the other set. As illustrated in Flgure 2.9 for
a normal velocity profile, an abrupt change in the Hep profile, exaggerated in the figure,
occurs that is not numerically desirable. Initially, |@u/87| is near zero between the two
shear layers and the effect of the abrupt change is negligible. As the calculations progress
downstream, |8u/0r| between the two shear layers increases magnifying the negative
effects of the abrupt change. Therefore to avoid this problem, a smooth hyperbolic
tangent function is used to transition from one set of constants to the other set. This
works until the outer jet core is about to disappear and the shear layers are about to
start merging together. At that point, the mixing length model must be altered and the
normal and the inverted velocity profile cases treated separately.

2.3.1 Normal Velocity Profile Mixing Length Model

The normal velocity profile mixing length model was developed by observing the
behavior of the u and 8u/dr profiles as the shear layers merged and by comparing
calculations to measured data taken from Lau [1980]. The merging shear layer profile
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Illustration of smoothing turbulent viscosity profile. (a) typical normal

velocity profile with two shear layers; (b) turbulent viscosity profile showing smoothed

region
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contains a local minimum in |@u/dr| that disappears as the shear layer fully merges into
a single jet, see Figure 2.10. This local minimum is used as a point to separately identify
the two merging shear layers. A single characteristic length for the merging shear layers

is defined as
AU

{= Wm; (2.29)

where AU max is the largest AU between the two values determined by using the sepa-
ration point. The C and C. factors are also determined from the edge conditions that
gave us AU The maximum gradient [Gu/ 6r| 1s the largest value of |0u/dr| that
occurs in the mergmg profile. This approach for determlmng Cl’ C2, and ¢ for a merging
normal profile has the advantage that as the flow transitions into a single jet profile, the
C C., and { factors transition into the appropriate form for a single jet.

A comparison of calculated velocity profiles to measured data (Lau [1980]) at
four axial locations is shown in Figure 2.11. Initially, the two profiles are very similar.
Downstream, deviations increase between calculated and measured profiles. But, in
essence, the calculations produce a reasonable merging jet for an initial normal velocity
profile.

Whereas the normal velocity profile mixing length model was formulated by com-
paring results to the Lau [1980] data, von Glahn et al. [1984] has data not considered in
the mixing length model formulation. We compare these latter measurements to both
velocity profile (Figure 2.12) and temperature profile (Figure 2.13) calculations at five
axial locations. The experimental initial conditions are not clearly known, hence the
discrepancy in the initial inner core results and subsequent flow development. Never-
theless, the calculated mean velocity and temperature profiles show merging and decay
with axial distance in a manner similar to the measured data.

2.3.2 Inverted Velocity Profile Mixing Length Model

When an inverted profile starts to merge, it is obvious that a local maximum
occurs in the velocity profile yielding du/8r = 0, see Figure 2.14(a). This point is used
to identify the separation point between the two shear layers. As long as the inner core
exists, the two merging shear layers are treated separately but their constants are added

(€,C58) i1 = (€,Co8) ot +(€,C5) ee- (2.30)

This increases M actoss the profile to mimic the increased turbulent action as the
inverted profile starts to merge. When the inner core ends, equation (2.30) is no longer
used and it is assumed that the mixing process in the outer shear layer dominates the
flow, hence (C C t) total = ( 1 2£) o See Figure 2.14(b). As with the normal
profile, this later usage of C C2, and l tra.nsmons into the proper usage for a single

as follows:
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Figure 2.10. Definitions of merging normal velccity profile mixing length model factors.
(a) initial merging profile; (b) advanced merging profile; (c) fully merged profile
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Figure 2.11. Comparison of normal velocity profile jet calculations to measured data.
Data from Lau [1980]. Figures show four radial velocity profiles at four axial locations
and one centerline velocity plot. Operating conditions: U1 = 411 m/s, T1 = 657 K, R1

= 1.96 cm; U2 = 274 m/s, T2 = 292 K, R2 = 3.91 cm.
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Figure 2.12. Comparison of normal velocity profile jet calculations to measured data.
Data from von Glahn et al. [1984]. Figures show five radial velocity profiles at five axial
locations. Operating conditions: U1 = 459 m/s, T1 = 1029 K, R1 = 5.03cm; U, = 314

2
m/s, T2 =248 K, R2 = 8.80 cm.
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Figure 2.13. Comparison of normal velocity profile jet calculations to measured data.
Data from von Glahn et al. [1984]. Figures show five radial temperature profiles at five
axial locations for operating conditions given in Figure 2.12.
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jet downstream. It should be noted that the mixing length model gives By = 0 at the
local maximum, which is unrealistic. The simple solution taken here was to smooth the
|0u/dr| profile, and hence smooth Mpi @ process discussed in Appendix B.

The inverted profile data from Lau [1980] is used for comparison to calculations.
These were the primary data used for designing the inverted profile mixing length model.
Figure 2.15 shows good velocity profile comparisons at four axial locations. The cen-
terline velocities do not compare very well but the experimental data are questionable
since centerline values do not agree between the centerline velocity plot and the center-
line velocities in the radial profile plots. Further comparisons with data not involved in
the design process for this mixing length model are shown in Figures 2.16 and 2.17 for
velocity and temperature profiles, respectively, measured at five axial locations by von
Glahn et al. [1986). Another set of comparisons with data from Tanna et al. [1979] are
shown in Figures 2.18 and 2.19. For both sets of data, qualitative agreement is seen for
both velocity and temperature profiles. Thus, the calculations are capable of producing
a reasonable merging jet with an initial inverted velocity profile.

2.4 Summary

In this chapter, a steady, turbulent boundary layer code has been formulated to
calculate the mean flow development of a compressible, coaxial jet. Mean flow properties
were generated for coaxial jets with either a normal initial velocity profile or an inverted
initial velocity profile that expanded and merged in a manner representative of measured
data. These mean flow results are now to be used to calculate instability wave charac-
teristics for coaxial jets. As discussed in the next chapter, the instability waves are the
dominant sources for near field pressure fluctuations and far field radiated sound.
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Figure 2.14. Definitions of merging inverted velocity profile mixing length model factors.
(a) initial merging profile; (b) advanced merging profile, no inner stream potential core;
(c) fully merged profile
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Figure 2.15. Comparison of inverted velocity profile jet calculations to measured data.
Data from Lau [1980]. Figures show four radial velocity profiles at four axial locations
and one centerline velocity plot. Operating conditions: U1 =171 m/s, T1 = 292 K, R1

= 1.96 cm; U2 = 274 m/s, T2 = 292 K, R2 = 3.91 cm.
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Figure 2.16. Comparison of inverted velocity profile jet calculations to measured data.
Data from von Glahn et al. [1986]. Figures show five radial velocity profiles at five axial
locations. Operating conditions: U1 = 314 m/s, T1 = 248 K, R1 = 5.03 cm; U2 = 459

m/s, T2 = 1029 K, R2 = 8.80 cm.
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Figure 2.17. Comparison of inverted velocity profile jet calculations to measured data.
Data from von Glahn et al. {1986]. Figures show five radial temperature profiles at five
axial locations for operating conditions given in Figure 2.16.
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Figure 2.18. Comparison of inverted velocity profile jet calculations to measured data.
Data from Tanna et al. [1979]. Figures show five radial velocity profiles at five axial
locations. Operating conditions: U1 = 273 m/s, T1 = 434 K, R1 = 2.61 cm; U:2 = 477
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Figure 2.19. Comparison of inverted velocity profile jet calculations to measured data.
Data from Tanna et al. [1979]. Figures show five radial temperature profiles at five axial
locations for operating conditions given in Figure 2.18.
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Chapter 3

THE INSTABILITY WAVE AND
SOUND FIELD SOLUTION

In the introduction, we discussed the background for using spatially growing in-
stability waves in a model for sound generation in supersonic jets. This chapter describes
in more detail the equations that govern the development of the instability waves in these
jets and their identification as sources of noise radiated to the far field. The formulation
follows the approach of Tam and Burton [1984a] with the addition of a nonzero free
stream velocity, Tam [1989]. Solutions are created that apply to separate but overlap-
ping regions as illustrated in Figure 3.1. In the inner region, equations are developed
that apply to the slowly diverging jet and its immediate environs. These equations are
described first in this chapter. After a multiple scales expansion, the result to lowest
order is a description of the instability wave in terms of its local growth rate and phase
speed. Next, the outer solution is developed after rescaling the governing equations
since the disturbances in the outer region are acoustic in nature and they travel in all
directions with equal length scales. This is followed by the matching process, where the
inner and outer regions overlap, that completes the description of the instability wave to
lowest order. We then develop expressions for the near field pressure fluctuations and the
far field directivity pattern. Finally, after describing the numerical procedures used to
complete the calculations, we verify our procedures by comparing our calculated results
to measurements from single and coaxial jet experiments.

3.1 Linearized Equations of Motion

The linearized equations of motion for small disturbances are derived from the
following compressible, inviscid equations of motion:

continuity:
3p* * *y ¥
?+V-(pV)=O (3.1)
momentum:
*
¥ [—Z‘; +Vv* -v*v*] =-V*p' (3.2)
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Figure 3.1. Schematic illustrating inner and outer regions of matched asymptotic solu-
tion. Inner region including the jet flow is outlined by a thin dashed line. Outer region
outlined by a thin solid line outside the jet.
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energy:
o0h 3p* * ok *
+V VR v -V 3.3
P [6t ] at* + p (3.3)
state:
pr=p" R;T* (34)

where * denotes a dimensional quantity. It is convenient to combine the state and energy
equations, and including the thermodynamic relation Rt = c;T*, to get

a” VLV YV =0 (3.5)

where continuity has been used to eliminate the density p*, and v appears from the
relation ¢’ /R; = v/(y - 1). This results in a reduction of the governing equations to
(3.1), (3.2), and (3.5). These equations are made dimensionless by using

* p* p*
j Pi%j

_ * _*_U_j _
V=RV t—tR V=

8|9

where all terms with subscript j are defined at the jet exit. The resulting dimensionless
equations have the same form as the dimensional equations, hence we simply drop the *
from our notation.

To linearize these equations, we let

p=P+p
v=V+V (3.6)
p=9+7

where the overbar denotes a mean flow quantity and the prime denotes a fluctuating
quantity, in this case, a small amplitude instability wave. Substitute equations (3.6) into
the dimensionless forms of (3.1), (3.2), and (3.5). After expanding terms, subtracting
the equations governing the mean flow quantities, and neglecting higher order terms
containing products of fluctuating quantities, we get the linearized equations

%+V.Vp’+V'-Vﬁ+ﬁV-V’+p’V-V=0 (3.7)

%v-+v vw+V.vW+ E [v vV ——%Vp, (3.8)
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U

oy _
%+V-Vp’+7ﬁV-V’+‘yp’V-V= 0. (3.9)

These equations have included the conditions that the mean flow is steady and that
for a free jet, the mean static pressure is constant throughout the flow. Taking into
consideration tha.t the mean pressure is nondimensional and constant, it is easy to show
that yp=1 /M where M is the jet exit Mach number.

3.2 Inner Solution to Lowest Order

A cylindrical coordinate system centered on the nozzle exit, as shown in Figure 3.2,
is used for axisymmetric jets. The cylindrical coordinates (r, 8, z) have corresponding ve-
locities (v, w,u). For supersonic jets, the mean flow changes slowly in the axial direction
and is represented by (Tam and Burton [1984a})

V = (e7,(r,2),0,91,2)) . (3.10)

Outside the jet as r — oo, the ambient mean flow conditions are

— = v
V=V = ( -m-,o,— )
o0 = \*TT %0 (3.11)

|
ol

oo’

The € in (3.10) represents the rate of spread of the jet mixing layer which is small for
supersonic jets and, hence, € is the small parameter of the problem.

To construct the inner solution, we transform the axisymmetric coordinates (7, z)
to (r,s) where s = ez is the slow coordinat:. Following Tam and Burton [1984a]
and Whitham [1974], the fluctuating disturbances are represented as an asymptotic se-
ries of waves traveling through a nonuniform medium which in this case is the mean flow
of the jet.

[ p'(r,0,2,1) ] P (7> 9)
v'(r,6,2,1) ,-,( s)
w'(r,ﬂ,a:,t) = Z é (e) u‘: ( y8) exp[i (¢( )+n0 wt)] (3.12)
u/(r,0,z,1) [ m=0 @ ( s)

| p/(r,6,2,1) | ( s) |

We recognize that in order to obtain terms of (3(1), 60(5) = 1. Higher order terms will
have functional forms for 6m(e), m > 0, that are found from the asymptotic expansion
of the outer solution in the matching process.
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Figure 3.2. Cylindrical coordinate system centered on nozzle exit.
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Before carrying out the expansion represented by (3.12), we write the linearized
equations of continuity, motion, and energy, (3.7), (3.8), and (3.9), respectively, in cylin-
drical coordinates. We include the definition of the mean flow (3.10) and the transforma-
tion to the (r,s) coordinates. Finally, we carry out the differentiations with respect to ¢
and 0 and divide the equations through by exp[i(nf —wt)]. This results in five equations
relating p, 9, ¥, 4, and p.

. _0p 0p .Op 1 ot
—wp+ev 19 +5”$+”3 + et L +p[——(rv)+z w+ea—]
(10, _ ou
+p[;b—;(revl)+s L ] 0 (3.13)
; 22 Lo 2P a e P 2 108
—-u,.m+evla +€u63+€v8r +¢€ ua +70_ €7 or +e¢ uas —‘ﬁar
(3.14)
- - 611‘) _611: ._1 _ lin.
ww+evlg+eu-é;- +ew7_—r 5 (3.15)
. ou ou 0% p [ ( 1 ap
-—mm+€vla +eu‘9 +va + i + +£ Bs pas (3.16)
i, 2 4l Ly [L20) 4 o o2
_wp+svlar+euas+ 2 (rv)+z w+ea
J
+‘yp[ (rev )+£5a ] =0 (3.17)
When we apply the remainder of the expansion (3.12), for example 7 is
5r9) = 3 6, (€ )exp (122), (318)
m=(
we find terms of the form
D15 exp (2] = [P ;5 id9 (4)
ds [pmexp (t € )] - [ 3s T Pmzas| P\ e )
Hence, for convenience, let b
L= a(s). (3.19)
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Equations (3.13) to (3.17) with the expansion applied, may now be divided through by
exp(i¢(s)/e) and partitioned into terms according to 6m(£). In general, the mth-order
set of equations can be combined in favor of ﬁm and cast in the form

2
&P 8P 2
__m+[l+2_33j_ @]_mJ,[pMJ?w —"—-a2] p_=G_(rs) (3.20)

where @ = w — a@. The right side term Gm depends on lower order terms only. To
lowest order, m = 0, G0 is zero and the equation is homogeneous. The homogeneous
form of (3.20) is commonly called the compressible Rayleigh Equation.

Outside the jet, the mean flow is given by (3.11) and (3.20) reduces, for By to

2

°p, 109, 2

9P 19 |- m252 -2 _o%ls =

ar2+f3f+ PooM; P ik By =0 (3.21)

wherew =w-—a¥_. Equation (3.21) is Bessel’s Equation with solution of the form
. 1),. 2),.
By = A, @D (@A) + B,Hixr). (3.22)

The functions HS)() and H £2)() are nth-order Hankel functions of the first and second
kind, respectively, and

1/2
2.5 Mzwz] & (3.23)

Aa) = [a ~PooM W,
The choice of branch cuts for (3.23) will be discussed in the matching process.
To generalize, the lowest order solution of (3.20) has two linearly independent
solutions that are functions of » and s. The amplitudes of these functions will vary with
axial location giving a solution of the form

By(r,) = Ay (3)CE(r, ) + By(s)CE(r,)- (3.24)

As r — 00, equation (3.24) must tend to (3.22) and as r — 0, ﬁo must be finite.

3.3 Outer Solution

In the region outside the jet, the ambient conditions Py and u_ are uniform.
Disturbances that travel in this region are independent of the coordinate system. Hence,
distances traveled by the disturbance in any direction will be of the same scale. Using
the cylindrical coordinate system of the inner solution, the axial coordinate was rescaled
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as s = ¢x. To bring the radial coordinate in the outer region to the same scale, we let
7 = er be the scaled radial coordinate.
Before transforming the governing equations to the outer coordinates, we want to

reconsider the nondimensionalized momentum equation written as:

av 1

—+V:VV=-=V 3.25
Substituting in (3.6), subtract mean terms, and neglect higher order terms results in a
linearized momentum equation of the form

!
%+V-vv’+v’-vV=—

!

vy + 5 V5. (3.26)

o=
‘OL,"5~

This equation more clearly shows the effect of assuming V5 = 0 throughout the medium
outside the the jet (compare (3.26) to (3.8)). Equations (3.7) and (3.9) still apply to the
outer region.

Now, substituting (3.11) into (3.7), (3.9), and (3.26) results in equations from
which v, w, 4, and p can be found without referring to the equation for p, the linearized
form of (3.7). Hence, after transforming from the (r,z) coordinates to the (7,s) coor-
dinates and applying the azimuthal and time dependencies exp(inf — iwt), we get the
outer region linearized momentum and energy disturbance equations.

Copn 20 2000 2.0 (Ty) __10p
tev+u°oas+e 7"87+£ "l 5= I_’ooa? (3.27)
Cwrn M 2l0w 2 T lin
z€w+u°°as+e = o T¢ sz =33 P (3.28)
oo
.. Ou 229_61: 1 8p
-t u+u°°as+s = 8’1‘——5 s (3.29)
o0
W ooq O 270 L[li— e 0] _
z€p+u S + 3F(rv)+7w+6s =0 (3.30)

0 ds FOF | M2 LT
J

Since no confusion should arise, primes have been left off the disturbance variables v, w,
u, and p.

The solution to (3.27) through (3.30) begins by taking the Fourier Transform
of the disturbance variables. For instance, the Fourier Transform pair for the pressure
disturbance is:
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Fourier Transform:

o0
(k) = 2—1‘; / p(s)e_ﬁks ds (3.31)
—0Q
Inverse Fourier Transform:
w .
p(s) = / #(k)e'*e dk. (3.32)
-0

After applying the transform, we rearrange the equations and examine them to obtain
the following relations:

. 10u
= = (3.33)
. n _
= =i (3.34)
w v
% 2% 0 1
( i +€ = 3'1’)“— ﬁoozkp (3.35)

where &, = w - eku__. Equations (3.33) and (3.34) are statements in the transformed
variables that the disturbance velocities outside the jet have zero vorticity. Since the
outer disturbances are acoustic in nature, this result is appropriate, Skudrzyk [1971]).
These relations allow the transformed outer equations to be combined into a single
equation for .

2 9 r - 2
4_ 2V | 074 1 . 2_ v 4 .29 | 0
1- R — - 2% Mo,-=X TR —
[ spooMJF2] r2+f+w PooM ;@5 +e€ p°°MJF3] =
- 2% n’ 2
+ POOMJ 52 _;j—k =0 (336)

This equation almost has a Bessel Equation form. It can be transformed into that form,

Tam and Burton [1984a], where the right hand side is nonzero but very small. We then
. . . 2

get an approximate solution valid to order £°,

i~y 2zq (i'k’yl/ 2) (3.37)

where
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and Zq() represents any Bessel or Hankel function. To satisfy the outgoing wave or
boundedness condition as ¥ — oo in (3.36), it will be shown that the proper choice for
the Zq function is a Hankel function of the first kind of order ¢, Hél) (ifyl/ 2). The

general solution for % is
a=cy/ 21151) (iiylf 2) . (3.38)

The factor C may be found from the inner boundary condition on (3.36) as y — 0,

T — 0. Thus, C is independent of ¥, but may depend on s. In essence, the inner
boundary condition is the instability wave suggested by (3.12) which as ¥ — 0, has some
amplitude and phase A(s,¢) exp(i¢(s)/e). Now, transform the boundary condition:

[e o)
g(k,e):ziﬂ_ [ Ats,e)ei ek g (3.39)

—00

Hence as ¥ — 0, &(F, k) = g(k,€). Therefore,
(7, k) = g(k, 28D (F R ') (3.40)

Finally, using (3.35), (3.32), and absorbing any constants into g(k,¢), the outer solution
is

00 3= el M2__
s 5) < S |
p (7,8)= /g(ka":) [I-HU = 6?]{ ¥ —cp M7

oo
—00 k
1
y .
x Hgl) (té (€2k2 _ ﬁooMszi)% ‘ ?2 — 54'ﬁ°°M]252°°) 2.) } e'ks dk. (3.41)
\

3.4 Matching to Lowest Order

The inner solution results from asymptotically expanding the equations that apply
to the inner region. As a consequence, it does not satisfy the outer boundary conditions
of the problem that lie in the outer region. Conversely, the outer solution does not
satisfy boundary conditions that are in the inner region. Each part of the problem has
missing conditions that are satisfied by the process of matching the two solutions. As
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stated by Tam and Burton [1984a], the matching procedure to follow is the intermediate
matching principle given by Van Dyke [1975]. The intermediate matching principle
defines an intermediate variable and expands the inner and the outer solutions in terms
of this variable. These two intermediate solutions must overlap in some domain whereby
the difference between the inner and the outer solutions must vanish to the appropriate
order in the intermediate limit. This process will first be followed for the outer solution.
We will then have appropriate information to enable us to find higher order terms of the
inner solution.
The intermediate variable is defined as

1/N

Ff=re (3.42)
where N is a large positive number. In terms of the outer variable 7, we get
Foer=rel UV, (3.43)

Letting 5 = ¢k, we transform (3.41) from the (7, s) coordinates to the (7, s) coordinates.

00 142/N 5
0= o\ — 1 (n € Y9
e T2 o225

—00
—ilep_Mw 3w
» {(ez-wfz ety uter ) AT
oo j oo
1
. -2/N.2 2_ 2.2 \2 ]
X Hg ) (u\(n) (e N2 _ . pooMj voo) )}em’/e dn (3.44)
where
1 T o
g (2,5) = — / A(s,e)e‘w(s)_sﬂl/e ds (3.45)
£ 2r
-0
2 _ 2 2.2 ,,4.22
g =n"—¢ pooMjquoo (3.46)
1/2
(2 _ .22
A(n) = (n —pooMjw,,) (3.47)
T =w-nu (3.48)

The goal is to asymptotically evaluate (3.44) as ¢ — 0 keeping 7 fixed. This is the
intermediate limit.

The first step is to evaluate (3.45) by the saddle point method. (See, for exam-
ple, Bender and Orszag [1978] and Dingle [1973].) The saddle point is found by setting
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the derivative of the exponential argument
O(s) = i[¢(s) — sn] (3.49)

equal to zero; that is

d3§3) — [dt&s) a 17] -0

or
a(s)—n=0 (3.50)

where use has been made of (3.19). Let 3(n) be the root of (3.50). The saddle point is
then at s = 3.
Expanding A(s,¢) as

A(s,e)= A () +ed () + -+, (3.51)
the saddle point evaluation of (3.45) is
1
7)o |%@-3le (4 ot cBm 4
g( ,e) = [_izm,(g)] e (A, +eBE+-} (352

where 4
- _ da
(%)= ds

§=8
and B(3) is defined in Appendix C.

The next step is to substitute (3.52) into (3.44) and evaluate the resulting expres-
sion by the saddle point method, also. Again, the saddle point is found by setting the
derivative of the exponential function

6(n) = i[#(3) — 13 + 1]

equal to zero.

Noting that d¢(3)/d3s = a(3) and that a(3) = 7 from (3.50), we get that 3() = s at the
saddle point. Hence, the saddle point for (3.44) is n = a(s).

After the saddle point is defined, there is a lot of algebra involved in obtaining
the evaluation of (3.44). An outline of the steps involved is given in Appendix C. The
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final result for the outer solution in the intermediate limit is

(5 5) ~ 4L A (1—ielnepooM?w 7 )H'(ll) (iA(a)e—I/Ni‘)

j o0 o0
o ms s SN\ (1) (orf o ~1/N
+e (JnopooMjwoovoo 2A0+A1+E(e r>) A (z)\(a)e r)

~1/N . o g (,-,\(a)e—l/N;) +0(Ime)  (3.54)

’)m n

+D(£

Equation (3.54) has terms of O(1), O(eln¢), and O(¢). This suggests that the
expansion given by (3.12) should have

§.(¢)=¢€lne
6; (&) =¢ (3.55)
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We now want to match the outer solution expansion (3.54) to the inner solution ex-

pansion in the intermediate coordinates. From (3.18) and (3.24) and using r = i-'e_l/ N,

the inner expansion to O(1) s
3 (7,5) = /¢ [Ao(s)c{ (e‘l/ N i,s) +By()CE (e_l/ N s)] .
As £ - 0 with 7 fixed, then
e N5 5) » BY (iA(a)e_l/ N F)
e V%) » D ( iNa)e MV 1‘-) .
Hence, in the intermediate limit
(7, 5) ~ MOV [Ao(s)H’('l) (iA(a)s_I/N F)
+ BB (i,\(a)c‘l/ N r)] +0(che). (3.56)
Comparing (3.56) to (3.54), we see that
Ay(s) = jo(s) (3.57)

By(s)=0. (3.58)

This result and the condition of finite value at r = 0 placed on (3.24) turns the m = 0
solution of (3.20) into an eigenvalue problem with solutions only for certain values of the
eigenvalue a.

The matching of the inner and outer solutions at the intermediate limit and at
the saddle point 1 = a(s) has also matched the arguments of the Hankel functions H'(ll) .
We can now show that this is the proper choic2 to meet the boundedness condition as
r — oo and what the conditions must be on the argument of the function. When the
asymptotic expansion for large arguments is made, the Hankel function of the first kind
takes the form (Abramowitz and Stegun [1965]"

AN(z) ~ 27126, (3.59)
Writing the Hankel function argument in (3.54) and (3.56) as

z = i(Re{M(a)} + tIm{\(a)})r
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and substituting into (3.59), the exponential function becomes

e—Re{A(a)}re—iIm{,\(a)}r ]

To insure that the function decays for large r, we must have that Re{A(a)} > 0. In
general, then, for the complex value A(a),

0ol

SagMMS%. (3.60)

This represents the choice of branch cuts for (3.23). Furthermore, since in the matching
process 7 = a(s), (3.60) must also apply to A(7) in (3.44), which basically has the
same Hankel function argument as (3.38). Thus, we are justified in choosing the Hankel
function of the first kind as the functional form for the solution in (3.37).

3.5 Matching to Higher Order

To match terms to higher order, we substitute (3.55) into the expansion for the
inner region equations (3.13) through (3.17). The equations can then be clearly parti-
tioned into O(eIn¢) and O(¢) terms. These equations can be combined into the form of
(3.20) where Gl(r, 8) =0 and G2(r, s) is a function of m = 0 terms.

With Gl(r, s) = 0, the O(¢ln¢) expansion term has a solution identical to the
O(1) term. Hence,

p,(r,) = A, (s)P(r,9) + B ()5 (1, ). (3.61)

The same boundedness conditions apply here as in the O(1) solution in the previous
section. Following the same procedure in the intermediate limit, we find after matching
to (3.54) that
— 2 _ 3
Al(s) = —zpooMj woovovo(s) (3.62)

B(s)=0 (3.63)

Equation (3.20) for m = 2 is inhomogeneous. When the O(¢) inner equations are
manipulated to obtain the form of (3.20), the right side becomes

_J . 2207w OR = _ R .
G2(r,3) = p{ [; + -E-a—r] R + . + wRP + z:Rw +iaR (3.64)
where
i 0 0

%
|
- (3.65)
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ow,  Ow v
= -7 -% . |
R 7 _Qar "_Qas By (3.66)
ou, O g 19, A, ou
-5 2o _Z% _ . _'i___Q___Q[— ou —_3"|
R, 13 " %8s " "03s pods p "13- * 35 (3.67)
Y 85 O
= 25 Py _ 220 T a2 [li 514 28
R =M% ~ M %% ~ 5 ™Mb |75, ()t 5, I - (369)

In this case, the solution of (3.20) is the sum of the homogeneous and particular solutions
as found using the method of variation of parameters, Bender and Orszag [1978). It takes
the general form

5,(r,9) = Ay(6)0(r, )+ By()CE(r,5)
"G, (v,9)(y,5)
Gy 2
- Cf(r’ 8)6/ W(y, 8) dy

* G, (v,5)(y,
+ ) 2(;(;%()” Dy (3.69)
0 b

where Cf and Cg are the eigenfunctions of the homogeneous form of (3.20) and W(r, s)
is the Wronskian of (‘f and Cg given by

)
W(r,s) = ——. (3.70)

Again, in the intermediate region, we transform from r to 7 in (3.69). When
this is done, we note that the intermediate limit lies outside the jet boundary defined
atr =171 . Beyond this point, the mean flow conditions are uniform and the inner
solution eigenfunctions take on the Hankel function form as shown in (3.22). Thus, in
the intermediate limit, the integrals in (3.69) can be split between the regions 0 < y < -

andr <y< e Nz,
m

74 (7,9) = A ()HY (iA(a)e_l/ N ,:) + B,()HD (if\(a)e_l/ NF)

Tm D
- ) (%) ARy

rm P
+ 7Y (i,\(a)e'l/ N F) Gy 5, 9)

d
W(y,s) y
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N @)
B Hr(;l) (i,\(a)s-—I/N;) / G o (v, 9)H “(iX(a)y) dy

W(y,s)
2) ~1/N g (y,S)H( Yixe))
+H; (iA(a)e F) / 2 W(y,s) dy. (3.71)

The integrals for r < y < s-l/ NF, as outlined in Appendix C, contain products of
Hankel functions a.nd powers of y. They are solvable in closed form using formulas
from Luke [1962] and Watson [1966]. The results for f, in the intermediate limit is

B(F,8) ~ A2(S)Hf(zl) (i,\(a)g-I/NF) + Bys) H1(12) (i,\( o) e—l/Nf)
TmG (y,s)C (y,s) r . _ )
' [ ( I/N) 0/ 2 W(y,?s) W - 4I2} Hf(,l) ('f\(a)e N r)

+D (e“l/ N i") 5?_-?/—1\,;51{9) (i)\(a)s_l/ il i")

rmG ,8 P , _
A I

where

D() is given in (3.54), and I and I are defined in Appendix C. Again, taking into
account the boundedness condmon on the inner solution, matching (3.72) to the O(¢)
terms of (3.54) results in

r
—-1/N. rG (y’s)cp(yvs)’, w
a0+ F () - 0/ e T4k

<

PR T —1/N .
_Jnop M.©_ °°2A0+A1+E(e r), (3.73)

o J
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TG (19,8 x
/ _Z_J_W(y, 3) dy +-I =0, (3.74)

41
.32(3) =0. (3.75)

Equation (3.73) relates A2 to fio and .;1'1 while (3.74), when written out, provides a

differential equation for AO'

dA
o -
L, + AL, =0 (3.76)

where I3 and I 4 are given in Appendix C. The solution to (3.76) is

Ay(s) = Ay exp / %ds (3.77)
0

This completes the solution of the problem to O(1). Equation (3.77) shows the change
in AO(s) due to a slowly diverging flow. For a single supersonic jet, this effect has been
shown to be small, Morris and Tam [1977].
3.6 Near Field Pressure

The near field pressure disturbances to O(1) outside the jet are found from (3.44).
Using the following results from Appendix C:

T —€ ,omMJ T

H(l)( »\(n)( 4ﬁ°°Mf‘2°°) ) =gl (v\(n)

°°--1—zep MUE InT+-.-

e 8

) + O(e),
and
A(e,6) = Ay(9) +0(e),

with s = ez and T = ¢r, the pressure disturbances outside the jet, (3.44), including the
azimuthal and time dependencies, to O(1) is

pnoz)= [ oA e ay (3.78)

—-00
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where

y(n)=§1; / Zo(ez)ew(“)/ee"""dz (3.79)

and A(n) is given by (3.47). Equations (3.78) and (3 79) take the axial evolution of
the n—~th mode spatial instability wave described by A exp(i¢/¢e), Fourier transform it

into wavenumber space, multiply it by a “propagator” functlon H’(l ) and then inverse
Fourier transform the result back to physical space. In essence, the instability wave
is considered the source in a radiation problem where in the near field there are both
propagating and nonpropagating waves. It is the propagating waves that get to the far
field as sound.

3.7 Far Field Pressure

To get an estimate of the sound radiated to the far field, it is first convenient to
transform from cylindrical to spherical coordinates. Letting

z=Rcosyp and r=Rsiny (3.80)
equation (3.78) becomes

o0
o(R,0,9,t)= / g(nED () Rsin PRV ind ity (3.81)

—00

In the far field where R is large, we can replace the Hankel function by its asymptotic
form, Abramowitz and Stegun [1965].

1
2 - iny —i%n —iJ
Hr(ll)(iA(ﬂ)RSin'/))"‘ [W]?’e A(m)Rsiny —ign —ig (3.82)

Substituting (3.82) into (3.81) results in an integral that can be evaluated by the method
of stationary phase, Junger and Feit [1986]. The final solution is

HR090~ o (;’7’2,,,] el AT e
- n
o0

where

1/2
®(7) = - M2 M w [(1 — M2 sin’ ) ?_mM, cos¢], (3.84)
(o)
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M2 =5 M

00 o0 j oo’

and the stationary phase point 7 is given by

_1/2 2_

_ M W COs ¢ ﬁooMj T w (3.55)
n= - )
o) G a1

Equation (3.83) can be used to get the far field pressure directivity pattern. From Pierce
[1989], the normalized differential sound power passing through a differential spherical
area is given as

dP = %Ipl2R2 sin 1 dyp df. (3.86)
Noting that the differential solid angle is defined as

dQ = sin ¢ dyp d, (3.87)

we get the sound power radiated per unit solid angle after dividing (3.86) by (3.87),

2
D) = % = %IpI2R2 = . '9(_)1111 Ty (3.88)

To find the angular dependence of g(7), (3.85) must be solved for 9 in terms of
7. When this is done, we find that solutions only exist for 7 < 'ﬁc where

5121
7= p_°9_._-7_ (3.89)
¢ 1+M_

limiting 1 such that 0 < ¥ < x/2.

3.8 Numerical Formulation

The problem we set out to solve has been completed to within a constant, basically,
the initial amplitude of the instability wave. To obtain results for various flow conditions
in a supersonic coaxial jet, the pertinent equations of this chapter, (3.20), (3.78), and
(3.88), must be solved numerically.

As was mentioned with regard to (3.77). the effect of flow divergence on stability
results from supersonic jets is small. Tam et al. [1992] neglect this effect in calculating
the instability waves in a Mach 2, hot jet. In an extension of the model to include a
wide spectrum of frequencies, Tam and Chen [1993] assumed that the validity of the
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model would not be affected by neglecting the flow divergence. Morris and Bhat [1992]
make the same assumption for instability wave calculations in supersonic elliptic jets.
The instability wave characteristics are then governed by the local eigenvalues at each
axial location, known as the locally parallel flow approximation. The growth and decay
of the instability wave is then governed solely by the spreading of the mean flow and
the effect of the change in the eigenfunction shape with axial distance is neglected. We
will follow this assumption in our estimates of the instability wave characteristics in
supersonic coaxial jets. Thus, equation (3.77) reduces to

Ay(9) = A, (3.90)

and the phase term from (3.19) is found from
4

Hez)/e = / o(z) d. (3.91)
0

3.8.1 Eigenvalue Problem

Finite differencing (3.20) for m = 0 is one of the alternatives for obtaining a
numerical solution to the eigenvalue problem (See Mack [1984] and Drazin and Reid
[1981]). It is easily applied using the same evenly spaced r—grid on which the mean
flow was calculated and it provides a simple means to determine an initial guess for the
eigenvalue. We rewrite (3.20) as

9 p 1 op 2 2 2
L 208 _10P1 7% | 2(‘1)1_2__(2) 5 =
[ cor par] or pMJ' c) ¢ ) ¢ Py 0 (3.92)

where ¢ = w/a and € = ¢ — U. For the spatial stability problem, w is real and c is
complex, ¢ = ¢_+ zc (asis a= a + ia, ) Changing the eigenvalue from « to ¢ confines
the range in wluch the elgenvalue lies i m the complex c—plane. Given any real w, the
eigenvalue ¢ will have a real part, ¢ o that is within or near the bounds set by the real
mean velocity @. Thus, ¢ is easily found compared to o and the numerical technique
is more easily controlled since c lies within a limited range. Furthermore, in the initial
region of a coaxial jet with two thin shear layers and two eigenvalues, using c as the
eigenvalue allows easy identification of which ¢ belongs to which shear layer.

For eigenvalues representing growing waves, we apply central differencing to the
derivatives in (3.92) and rearrange into tridiagonal form to get the following difference
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equation
1-1z arls [ZA22]“ 1+12 Arls =0 3.93
=3 AT Pt | AT 2Pt |1+ 52 AT P, = (3.93)
h
where Z __[l+ 2 @_la—r)]
Ik~ [r " c-udr porl;
and

2 2 2
= lsp2 (¥ _g2_r (¥
ZOk_[pMj(c) - (c)]
are known at each interior grid point.

3.8.2 Boundary Conditions

The inner boundary condition on (3.92) depends on whether the eigenfunction is
either axisymmetric, n = 0, or non-axisymmetric, n # 0. Axisymmetry requires that
the eigenfunction have a zero first derivative on the axis. For non-axisymmetry, the
eigenfunction has opposite signs either side of the axis; hence, the eigenfunction must be
zero on the axis. In equation form, the inner boundary condition is written as

op
p = 0n=0 (3.94)
P = 0,n #0.

The outer boundary condition was defined by (3.21), (3.22), and from matching
B0 = 0. Taking the ratio of the two outermost grid points eliminates A, and rearranging
the results to get

0

_ ) (Prygn) .

Hr('l) (iar,) PytPyy =

0 (3.95)

defines the outer boundary condition.

3.8.3 Methodology of Numerical Solution

Equations (3.93), (3.94), and (3.95) when put together create a tridiagonal system
of equations that can be written as

A(c)p=0. (3.96)
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This equation forms a generalized eigenvalue problem, Stewart [1973], which has a non-
trivial solution only when
det[A(c)] = 0. (3.97)

The determinant of A is easily calculated as the product of the diagonal terms in an
LU-decomposition of A.

The solution of (3.97) requires an initial guess for the eigenvalue c. The form of
(3.97) provides an easy means of finding an initial guess. For a complex c, the deter-
minant of A is, in general, complex, also. Setting up a grid over the region in which
the eigenvalue is suspected to lie, the determinant of A is calculated at each point.
Contours are then drawn through the region that define the zeroes of the real part and
the imaginary part of det[A(c)]. These contours only cross at the eigenvalue. Once
the initial guess for the eigenvalue is made, refinement of its value is achieved using the
Newton-Raphson iteration method.

For a typical instability wave calculation, the eigenvalue must be found at every
axial location for a given frequency w. The contour grid method is performed at the first
upstream profile. Thereafter, the eigenvalue solution at the previous axial location can
be used as the initial guess for the eigenvalue at the next axial location. Extrapolating
the first guessed eigenvalue at the next axial location from previous values often speeds
up the convergence as long as the mean flow profiles are slowly changing.

3.8.4 Contour Solution

The numerical solution above has been discussed in terms of growing eigenvalues
where c, > 0. Implicit in the discussion was that the solution can then be calculated
along the real r—axis. However, in order to continue the inviscid stability calculations
into the damped region, ¢, < 0, it is well known that a contour deformation must be
made into the complex r—pla,ne to avoid the critical point r_ where ¢ — U(r ) = 0. (See,
for example, Tam [1975], Morris and Tam [1977], Tam and Morris [1980], a.nd Tam and
Burton {1984a).) If all the variables in (3.92) are assumed to be analytic, then any
contour can be chosen that avoids the critical point. Boyd [1985] discusses a number of
complex mapping techniques to do the contour calculations. In our case, however, @ and
P in (3.92) are only known on the real axis. It was found to be simpler to calculate their
analytic continuation into the complex plane along a simple box path around T, rather
than using complex mapping.

The direction of the contour into the complex r—plane is determined from the
derivative of the mean velocity profile. For normal profile jets, %/dr < 0. The critical
point for a growing mode lies in the lower half plane and passes into the upper half plane
when damped. The contour for damped waves must then go into the upper half plane
to go around the critical point since the branch cut associated with the critical point
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goes to —oo in the direction of the negative imaginary axis. The reverse is true for the
inverted profile jet where in the inner shear layer, 3%/dr > 0. The contour must go
below the damped critical point in the lower half plane as the branch cut goes to +oo.

In order to perform the calculations on the contour, the mean flow values must be
determined on the contour from analytic continuation of the values on the real axis. A
Taylor series expansion about the real axis for both the mean value and its first derivative
are generally written as

2z 37
F(r)=TF(r) - 1%{_(;_) P2y {ag(:) r, ;aaf (), 3] (3.98)
9F(r) _ 0F(r) _10°F(r) 2, [8*F(r) _10* f(r) 3
Tor ~ o T2 g3 it [Ta, T ] (399

where r = r + iri and T, is the distance that a grid point on the contour is from the real
axis. As appropriate, f represents either @ or . Equations (3.98) and (3.99) become
increasingly inaccurate representations of f(r) as T increases or as the curvature of the
profile gets larger. The latter is especially true near the edges of the mean shear layer. To
minimize inaccuracies, the magnitude of the second term in either the real or imaginary
parts of the expansions was limited to ten percent of the first term. Calculations of the
damped instability eigenvalues were stopped if this criterion was exceeded.

Once the numerical differencing along the contour was completed, as described
in Appendix D, the system of equations leading to (3.96) was found to be augmented
by the number of grid points that were added along the vertical parts of one or two box
contours. The formalism of the solution as previously described did not change as the
calculations proceeded from the growing to the damped eigenvalue solutions.

3.8.5 Near and Far Field Pressure

Both the near field pressure solution, (3.78), and the far field pressure directivity,
(3.88), depend upon the Fourier Transform of the instability wave, (3.79). We can use
the Fast Fourier Transform (FFT) to perform rhe calculations (Brigham [1974]). Using
the trapezoidal rule, (3.91) is written as

8;=01%3 (% + o) (-7,00) (3.100)

where
¢, =0 and j=12,. K.
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Setting AO = 1, the FFT of the instability wave becomes
M-1 3 .
FFT {exp (iqu) }m =Y exp (iqu) ¢~ i2mmi/M (3.101)
j=0

where by definition for j > K, exp(id>j) = 0. With M > K, we have zero padded the
FFT of the instability wave and increased the resolution in the wavenumber spectrum

since 9
r
An= M As (3.102)
Finally, the wavenumber spectrum of the instability wave is given by
Az .
g (nm) = E;r-FFT {exp (uﬁj)}m (3.103)
where
_ mAn, OSmS-AQl——l (3.104)
™= (m-M)Ay, Y<m<M-1 )

The first half of the FFT contains the spectrum for positive wavenumbers and the second
half contains the spectrum for the negative wavenumbers.

To solve for the near field pressure, we recognize that (3.78) has the form of a
convolution integral that is being solved in the transform domain. Williams and Maynard
[1982] and Veronesi and Maynard [1987) have devised a formulation for correctly solving
a two-dimensional form of this equation where the propagator function, in our case H 1(11),
is known analytically. The formulation is easily written for our one-dimensional problem
and (3.78) is written as (ignoring 6 and ¢ dependence)

p (’r, :z:j) = IFFT {FFT {exp (id:j) }m H,(ll)(i)\(nm)r)} (3.105)
where the inverse FFT is defined by
M-1 ..
FFT{S,}. = % Y 5 i (3.106)
m=0

and 7 is defined in (3.104). The zero padding in (3.101) must have M > 2K. Veronesi
and Maynard [1987] discuss errors that may arise in performing (3.105) such as the
presence of fictitious sources generated by the discretization of the continuous Hankel
fanction and the presence of singularities of the Hankel function. Replacing Hftl) in
(3.105) by an integrated average over the wavenumber resolution A7 at each M would
minimize these possible sources of error.
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The far field directivity is determined directly by substitution of (3.103) into
(3.88) and using only positive wavenumbers. For each N the angular dependence % is
determined from the inverse of (3.85) up to the limit set by (3.89).

3.9 Single Jet Examples

The calculated results consisting of mean flow, instability wave characteristics,
and radiated noise are compared to measurements from Mach 2, perfectly expanded
jets. Mean flow and acoustic calculation results are compared to measurements taken
by Seiner et al. [1982] and Seiner and Ponton [1985] on a cold jet. For a hot jet, the
calculated results are compared to measurements from Seiner et al. [1992]. In addition,
our calculated stability characteristics are compared to those calculations by Seiner et al.
[1993] for the same hot jet using analytic functions and Crocco’s Relation to represent
the mean flow. These studies have been specifically designed to study the importance of
instability waves as noise generators in high Reynolds number, supersonic, axisymmetric,
single jets. As such, they provide data with which to qualitatively and quantitatively
assess our numerical calculations of mean flow, instability waves, and external pressure
disturbances.

The mean flow comparison for a cold, Mach 2 jet is shown in Figure 3.3(a) for
centerline velocity and in Figure 3.3(b) for half velocity point and jet half-width. The
data are from Seiner and Ponton [1985]. The aumerical calculations are not spreading
the jet fast enough compared to data, a function of the turbulence model discussed in the
previous chapter, but the qualitative comparison of slow initial growth followed by more
rapid jet spreading after the end of the potential core is represented in the calculations.
The near field sound pressures for this jet were mapped by Seiner et al. [1982]. The
1/3 octave filtered measurements are shown in Figure 3.4(a) for a Strouhal number
(St=fD/ Uj) of 0.2 and in Figure 3.5(a) for 5t = 0.4. The single frequency near field
pressure contours from our numerical calculations are shown in part (b) of each figure.
These contours are based on the n = 1 azimuthal mode which was shown in Seiner et al.
(1982] to be more dominant than the n = 0 mode. The levels shown in the numerical
calculations are arbitrary and are provided as a means of relative comparisons. The
measured data shows an estimation of the origin and direction of the sound emission.
The same results are seen in the calculations. Furthermore, as Strouhal number increased
from 0.2 to 0.4, the peak of the field narrowed and the origin moved towards the nozzle
in both measured and calculated results. The narrowing peak is confirmed in the far field
directivity measurements from Seiner and Ponton [1985] and in our calculations shown
in Figure 3.6. For both sets of measured and calculated data, the peak at St = 0.25 is
broader compared to the peak at St = 0.39.
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Figure 3.3. Comparison of cold Mach 2 jet calculations to measured data, mean flow.
Data from Seiner and Ponton [1985]. (a) centerline velocity; (b) jet half velocity point
and half-width b. Operating conditions: Uj = 510 m/s, Tj = 162 K, Rj = 2.49 cm.
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Figure 3.4. Comparison of cold Mach 2 jet calculations to measured data, near field
pressure contours. Data from Seiner et al. [1982). (a) 1/3 octave band filtered measure-
ments at St = .20; (b) calculated contours at St = .20
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Figure 3.5. Comparison of cold Mach 2 jet calculations to measured data, near field
pressure contours. Data from Seiner et al. [1982]. (a) 1/3 octave band filtered measure-
ments at St = .40; (b) calculated contours at 5t = .40
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directivities. Data from Seiner and Ponton [1985]. (a) St = .25; (b) St = .39
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Figure 3.7. Comparison of hot Mach 2 jet calculations to measured data, mean flow.
Data from Seiner et al. [1992]. centerline velocity. Operating conditions: U]. = 1115
m/s, Tj = 761 K, Rj = 4.57 cm.
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The hot, Mach 2 jet data were taken by Seiner et al. [1992] to study the rela-
tive importance of supersonic instability waves compared to Kelvin-Helmholtz instability
waves in the noise generation process. The latter were dominant; hence, our calculations
for Kelvin-Helmholtz waves are compared to their measurements. This type of compar-
ison was also done by Seiner et al. [1993] where mean flow measurements were used to
determine parameters to define the mean flow analytically. Using the analytic mean flow
profiles, stability calculations were done leading eventually to far field directivity pat-
terns. These results are used as a basis of comparison for our stability calculations using
numerically generated mean flow profiles. The mean flow centerline velocity calculations
are compared to data in Figure 3.7. Both results have shorter potential core lengths
than the cold jet results shown in Figure 3.3. The instability wave calculations are com-
pared in Figure 3.8 for both » = 0 and n = 1 azimuthal modes at a Strouhal number
of 0.4. Both sets compare growth rates and phase velocities. For the analytical calcu-
lations in Seiner et al. [1993], the contour integration in the damped region is avoided
by including damping in the stability calculations. Qur calculations follow the inviscid
contour integration described above. For the n = 1 mode shown in Figure 3.8(b), both
calculations give similarly shaped growth rate and phase velocity curves. They are less
similar for the n = 0 curves in Figure 3.8(a). The inviscid contour solution for the n = 0
mode fails to converge as the phase velocity approaches the maximum mean velocity. To
extend the instability wave solution downstream, the assumption is made that the phase
velocity is proportional to the centerline velocity and the rate of decay is a constant.
Even though the initial growth rates and phase velocities for both modes are very simi-
lar for the two calculations, they begin to differ as the mean flows differ in their spreading
rate. As shown in Michalke [1984], the instability wave growth rates and phase velocities
depend on the shape of the mean flow profiles and even though Figure 2.3 showed that
analytic functions can compare well with numerical results, the difference in spreading
rates between the two mean flows gives different stability characteristics at the same
axial location. In this case, the stability characteristics may show better comparison if
they were scaled by a local length scale such as the local momentum thickness.

The comparisons of far field directivity patterns for the hot, Mach 2 jet are shown
in Figure 3.9(a) for St = 0.1 and in Figure 3.9(b) for St = 0.4. Both our calculations
(based on numerically generated mean flow) and the calculations from Seiner et al. [1993]
(based on analytically generated mean flow) are compared to measured far field results
from Seiner et al. [1992]. In Figure 3.9(a), both sets of far field calculated results peak at
about the same relative level and at the same directivity angle. The same is basically true
for the higher 0.4 Strouhal number calculations shown in Figure 3.9(b). The oscillations
in the n = 0 results are due to the assumption that the decay rate is constant further
downstream. As clearly shown in Figure 3.8(a), this assumption underestimates the
damping and the decay rate is not enough to damp out the instability wave for n = 0.
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The wave lingers on as the wavelength gets shorter with axial distance. The Fourier
Transform of such a wave results in the oscillatory pattern seen in the wavenumber
spectrum. Nonetheless, the peak level and directivity are well predicted.

3.10 Coaxial Jet Examples

Much of the coaxial jet data discussed in the introduction lacks the detailed mea-
surements needed to make good comparisons to the single frequency, instability wave
noise generation model used in our calculations. Furthermore, most of the supersonic
coaxial jets, especially those with inverted velocity profiles, contained shocks that impact
the mean flow and the noise generation processes. However, at the minimum noise con-
dition, shock associated noise was reduced and the mean flow downstream of a composite
shock structure had the characteristics of a fully expanded flow. The shock associated
noise was dominant in the upstream directions and when it was minimized, the mixing
noise, predicted by the instability wave noise generation model, was more dominant. It
peaks in the downstream direction. Thus, we can compare our calculated results to mea-
surements of shock containing, supersonic coaxial jets operated at the minimum noise
condition.

Tanna et al. [1981] conducted a systematic experimental study of supersonic,
coaxial jets. For a nozzle with area ratio A /A = 0.747, they found that a minimum
condition for shock associated noise exxsted when the inner stream was operated at
slightly supersonic conditions. Directivity patterns were measured for overall sound
pressure level (OASPL) and for 1/3 octave-band frequency spectra at 30, 60, and 90
degrees to the jet axis. The spectra at 30 degrees showed a dominant peak due to
mixing noise. About this peak, frequencies were chosen to compare measured data to
calculated single frequency results. Calculated far field directivity patterns are compared
to measured far field directivities for both an inverted velocity profile jet and a normal
velocity profile jet operated at minimum noise conditions.

The inverted velocity profile operating conditions are taken from Test Point 35
in Tanna et al. [1981]. The nozzle exit velocities are U1 = 466.6 m/s and U, = 662.3
m/s. Using the given mass flow rates, we calculate the exit static temperatures as
T = 512 K and T = 562 K. These give the exit Mach numbers as M = 1.03 and
M2 = 1.39 showmg that the inner stream is slightly supersonic. With these operating
conditions, we calculate the mean flow, the instability wave characteristics, and the far
field directivity pattern. Using the 1/3 octave center frequencies of 500, 1000, 1600,
and 3150 Hz, we calculated the stability characteristics at Strouhal numbers fD / U of

.05, .11, .18, and .36 where D and U are the equivalent single jet diameter a.nd exxt
velocity, respectively. Unlike the Ma.ch 2 single jet results where the n = 1 mode was
more dominant than the n = 0 mode, the » = 0 mode was found to be more dominant
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Figure 3.10. Instability wave and far field directivity calculations for inverted profile jet.
(a) outer shear layer wavenumber spectra; (b) far field directivity at various S¢, n = 0,
data from Tanna et al. [1981] in 1/3 octave bands and overall sound pressure levels.



81

than the » = 1 mode off the jet axis. An example of this is shown in Figure 3.10(a)for the
wavenumber spectrum at St = .18. These spectra were calculated from the outer shear
layer instability wave characteristics. The critical wavenumber 1, defined in (3.89), is
shown in the figure. Everything at smaller wavenumbers propagates with supersonic
phase velocity and everything at larger wavenumbers propagates with subsonic phase
velocity. Hence, even though the n =1 mode has a higher spectrum amplitude, these
higher amplitude wavenumbers have subsonic phase velocities and do not radiate noise
to the far field. Therefore, the n = 0 mode dominates at angles away from the jet
axis and these modes are used to determine the far field directivity patterns shown in
Figure 3.10(b). The calculated directivities are scaled to agree with the measured 1/3
octave amplitudes at 30 degrees. The peak direction in the far field is well predicted by
the calculated results.

The normal velocity profile operating conditions are taken from Test Point 21.
The nozzle exit velocities are U L= 539.6 m/s and U2 = 403.2 m/s. Again from using the
given mass flow rates, the exit static temperatures are T, = 687 K and T2 = 207 K, and
we get similar Mach numbers, M1 = 1.03 and M2 = 1.40. For this case, the 1/3 octave
center frequencies were at 500, 1000, 2500, and 4000 Hz corresponding to single frequency
Strouhal numbers fDe/ Ue = .07, .14, .36, and .58, respectively. Since the outer shear
layer has a larger AU than the inner shear layer, the outer instability waves grow larger
and dominate the inner instability waves as shown in Figure 3.11(a) for St = .58. In
addition, at all four Strouhal numbers, the n =1 mode has a larger spectrum amplitude
than the n = 0 mode. In contrast to the results shown in Figure 3.10(a), the critical
wavenumber does not cutoff the peak as much and leaves the n =1 mode as the mode
with the larger noise radiation. Using the same type of normalization as the previous
case, the n = 1 far field directivities are shown in Figure 3.11(b). Since the peak of the
wavenumber spectrum is cutoff by 1, the calculated directivities are maximum on the
jet axis. This tends to agree with the trend in the 1/3 octave band data, but the data
are limited.

3.11 Summary

The analysis to predict the noise generation from a single frequency instability
wave propagating in the shear layer of a supersonic, perfectly expanded, axisymmetric
jet was completed. Equations were developed to calculate the local instability wave
characteristics at each axial location of a growing shear layer given the mean flow velocity
and density profiles. These characteristics were used to calculate the evolving growth
and decay of the instability wave. The Fourier Transform of the instability wave gave the
wavenumber spectrum that showed those components of the instability wave that had
supersonic phase velocities relative to ambient and those that did not. The supersonic
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Figure 3.11. Instability wave and far field directivity calculations for normal profile jet.
(2) outer and inner shear layer wavenumber spectra; (b) far field directivity at various
St, n = 1, data from Tanna et al. [1981] in 1/3 octave bands and overall sound pressure
levels.
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phase components were the ones that radiated to the far field as sound. Equations
were also developed to use the wavenumber spectrum to calculate the near field pressure
disturbances and the far field sound directivity. This approach was directly applied to
the supersonic coaxial jet once the mean flow properties were calculated numerically
using the scheme described in the previous chapter.

The numerical formulation for the instability wave and the sound field solution
was checked by comparing our calculated results to measured data and other calculated
results for a cold and a hot Mach 2 jet. We used the operating conditions given in the
references to numerically calculate the mean flow. Given the differences in mean flow
spreading between our calculated mean flow and the measured mean flow, the results we
calculated for instability wave characteristics, near field pressures, and far field directivity
agreed with previous measured and calculated results for relative amplitudes and peak
directivity. Example cases were then shown for an inverted velocity profile and a normal
velocity profile coaxial jet. With a limited amount of measured far field directivity data
from coaxial jets, our calculated single frequency far field directivities agreed with the
basic trends shown in the data. In the next chapter, we discuss the results from a small
parametric study of supersonic coaxial jet instability wave noise generation.



84
Chapter 4

RESULTS FROM
SUPERSONIC COAXIAL JET STUDY

The mean flow formulation from Chapter 2 and the instability wave noise gen-
eration model from Chapter 3 are used to conduct a study to gauge the effectiveness
of changing various operating parameters on the instability wave noise generation from
perfectly expanded, supersonic coaxial jets. To fully cover the possible ranges for ve-
locity ratio, temperature ratio, exit area ratio, and external flow conditions would be
an enormous task to cover; hence, by necessity, choices are made to limit the scope of
the study. A single jet with exit velocity of 1330 m/s and exit static temperature of
1100 K is chosen as the reference jet with Mach number 2. When scaled up, this jet
would produce thrusts and mass flows comparable to those projected for supersonic jet
transport aircraft engines. Following the choice of operating conditions for the reference
jet, operating conditions are calculated for normal velocity profile and inverted velocity
profile jets at the same total thrust, total mass flow, and total exit area as the reference
jet. With the exit area ratio fixed, the normal velocity profile calculations are conducted
for a small set of velocity and temperature ratios and the inverted velocity profile cal-
culations are conducted for a small set of conditions for jets operating at the minimum
noise condition given by Tanna et al. [1985). The area ratio for these coaxial jets is
chosen to be 1.25 and the external velocity is negligible.

In the following discussion, the normal velocity profile results and the inverted ve-
locity profile results are considered separately. In general, we first discuss the mean flow
calculations and compare the results for different operating conditions. This is followed
by an example of the growth rate and phase velocity results from the stability calcula-
tions. These results are then considered in terms of the wavenumber spectrum of the
instability wave calculated from the local growth rates and phase velocities. It is in the
wavenumber domain that we compare how the growth and decay of the instability waves
are affected by the different mean flow profiles based on different operating conditions.
Since the calculations for near field pressure disturbances and far field sound directivity
outside the jet are based on instability waves, changes in those results are also examined.
The amplitude of the near field pressure disturbances are plotted in contours to show
how the sound emanates from the jet. Some example contour plots are given. Compar-
isons of far field directivity patterns are easier to make, however, so they are examined
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in more detail for the various operating conditions. The normal velocity profile results
will be discussed first; followed by the discussion on the inverted velocity profile results.

4.1 Normal Velocity Profile

The study of supersonic coaxial jets with initial normal velocity profiles is con-
ducted with these jets having the same total thrust, total mass flow, and total exit area
as the reference jet. This means that velocities, temperatures, and areas are chosen to
meet these constraints. It is assumed that the lip of the nozzle exit between the two
streams is very thin with negligible area. Thus, the total exit area of the two streams
equals the exit area of the single stream reference jet. After equating the total mass
flow of the coaxial jet to the mass flow of the reference jet and the total thrust of the
coaxial jet to the thrust of the reference jet, we solve for the coaxial jet inner stream exit
velocity U1 and exit static temperature Tl’

U, =U —(}isr—%)— (4.1)

and

U (1 + 3,.;2)

T =T L

R

where Ue is the reference jet exit velocity, Te is the reference jet exit static temperature,
A1 is the coaxial jet inner stream exit area, A2 is the outer stream exit area, r is the
velocity ratio U2 / Ul’ and s is the density ratio p2/ Py These definitions for r and s are
consistent with their usage in Appendix A. Since r and s are used elsewhere to define
coordinate scales, it should be clear from the context when r and s refer to a velocity
ratio and to a density ratio, respectively. The density ratio may also be converted to,
and referred to as, a temperature ratio by using the perfect gas law and constant static
pressure. Hence, s = p2/p1 = T1 /T2. From the definitions of r and s, it immediately
follows that the outer stream velocity and static temperature are given by

(4.2)

U, = rU) (4.3)
and T
T, = —31 (4.4)

C-3
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For fixed area ratio, equations (4.1) and (4.2) have r and s as two independent param-
eters. The parameters chosen for study are shown in Table 4.1. Notice that in order to
maintain constant thrust and mass flow at a constant exit area, the inner stream velocity
is always higher than the reference jet velocity and the temperatures change accordingly.
The parameter space for the normal profile cases (as well as the inverted profile cases)
contain operating conditions that are of more academic interest than practical. For in-
stance, it would be difficult in propulsion systems to achieve the conditions of a relatively
low speed, hot jet stream with a high speed, cool jet stream.

4.1.1 Mean Flow Results

A typical result for a normal velocity profile mean flow calculation is shown in
Figure 4.1(a). The plot shows the edges of the large inner potential core, the edges of the
smaller outer potential core, and the outer edge of the jet. These results are basically
identical in form to those measured by Ko and Kwan [1976] for subsonic coaxial jets.
Also shown in the plot are curves representing the half velocity point of the total jet and
the region over which the two shear layers merge. The half velocity point is defined as
the radial point at any axial location where the velocity is halfway between the maximum
velocity (for a normal velocity profile jet it is the centerline velocity) and the ambient
axial velocity. For the r = 0.6 case shown (Case #3 in Table 4.1), the half velocity
point begins outside the outer potential core. This is typical for all cases where r > 0.5.
For r < 0.5, the half velocity point begins in the region between the inner potential
core and the outer potential core. The region of shear layer merging is indicated by the
line labeled Umerge extending from the tip of the outer potential core. It is the point
described in Figure 2.10 that is identified as the edge between the merging shear layers
in the mixing length model. This merging region is also indicated by the change in slope
in the outer edge line. Similar slope changes were noted by Ko and Kwan [1976]. The
slope changes are abrupt due to the change in the turbulence model at those locations.

The basic mean flow properties for all the calculated normal velocity profile cases
are shown in Figure 4.1(b) in terms of the locations of the outer core tip, the inner
core tip, and the end of the merge region. Considering the inner core tip locations first,
we have noted earlier that the effect of an external flow is to lengthen a jet potential
core and the effect of increased temperature on a jet is to decrease the length of the
potential core. Given the different velocities and temperatures for the two streams, the
calculated results for the inner core tip locations follow in line with the temperature
of the inner stream. The hottest inner stream had the shortest potential core and the
fastest spreading for the inner shear layer. The coolest inner stream had the longest
potential core and the slowest spreading for the inner shear layer. The results for the
outer potential core length show that in general for a given velocity ratio, the outer core
length is shorter for lower outer velocities and a higher temperature and longer for a



T s | Ul(m/s) | U2(m/s) [ TI(K) | T2(K) | M1 | M2

Reference | - - 1330.0 - 1100.0 - 20| -

Normal
Case #

2 0.80 | 1.00 | 1477.8 1182.2 | 1086.4 | 1086.4 | 2.2 | 1.8

3 0.60 | 1.00 | 1605.2 963.1 | 1032.6 | 1032.6 | 2.5 | 1.5

4 0.40 | 1.00 | 1662.2 665.0 916.7| 916.7]12.7 | 1.1

5 0.80 | 2.00 | 1534.6 1227.7 |1692.3 | 846.21 1.9 | 2.1

6 0.40 | 2.00 | 1900.0 760.0 | 1396.8 | 698.4 | 2.5 | 14

7 0.80 | 0.50 | 1425.0 1140.0 785.7 | 15714 | 25 | 1.4

8 0.40 | 0.50 | 1511.4 604.5 694.4 | 1388.91 29 | 0.8
Inverted
Case #

24 1.75 | 2.07 823.7 1441.4 | 16784 | 808.1 | 1.0 | 2.5

20 2.50 | 1.01 621.1 1552.9 954.5 | 9379 (1.0 | 2.5

21 2.90 | 0.75 556.0 1612.3 764.7 | 1011.0 { 1.0 | 2.5

22 3.55 | 0.50 4814 1708.9 573.3|1135.8 | 1.0 | 2.5

23 4.10 | 0.37 436.7 1790.6 47191 1247.0 [ 1.0 | 2.5

Area Ratio A2/A1 = 1.25 = Radius Ratio r2/r1 = 1.5
Velocity Ratio r = U2/U1 Density Ratio s = p2/pl = T1/T2
(Constant Thrust and Constant Mass Flow)

Table 4.1. Operating Conditions for Supersonic Coaxial Jet Calculations.
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higher outer velocity and lower temperatures. For the end of the merge region, its axial
location is fairly consistent for a given s but its radial location migrates toward the shear
layer with the smaller AU.

4.1.2 Instability Wave Characteristics

The instability wave characteristics are given in terms of the local growth rates
and phase velocities calculated from the eigenvalue problem. Figure 4.2 shows the growth
rates and phase velocities for the n = 0 mode of the normal profile case r = 0.6 and
s = 1.0 (Case #3 in Table 4.1) for both the inner shear layer (part a) and the outer
shear layer (part b). The results for the n = 1 mode are shown in Figure 4.3. Each line
represents the calculations at a single Strouhal number fDe / Ue where De and Ue are
the exit diameter and exit velocity of the reference jet or equivalent single jet. All the
stability calculations for the normal velocity profile jets are done at Strouhal numbers of
.06, .12, .20, and .40. With D and U fixed, this means that all the normal profile jet
stability calculations are at the same phys1ca.1 frequency for both inner and outer shear
layers. When calculations are completed for far field sound, this insures that they can
be compared at the same frequency. All the stability characteristics shown are of the
Kelvin-Helmholtz type. At Strouhal number .40, no Kelvin-Helmholtz type instability
is found for the outer shear layer in this case for both the n = 0 and n = 1 modes. All
the phase velocities shown are supersonic relative to the ambient speed of sound.

For the inner shear layer n = 0 mode, stability calculations are continued down-
stream as far as possible until the phase velocity approaches the inner core velocity.
After this point, no stability solutions are found. As shown in Figure 4.2(a), the sta-
bility solution is extended downstream by setting the phase velocity proportional to the
centerline velocity and holding the growth rate constant. Using this approach, the lower
Strouhal number instability waves have little damping with axial distance. Initially, the
inner shear layer growth rates increase with Strouhal number while the phase velocities
decrease. The instability wave continues to grow beyond the end of the outer potential
core and beyond the end of the merge region, but they are starting to damp before the
end of the inner potential core.

The outer shear layer n = 0 mode stability characteristics are shown in Fig-
ure 4.2(b). The initial growth rates also increase with Strouhal number and are larger
than the comparable inner shear layer growth rates, but these growth rates decay more
quickly than the inner shear layer growth rates. The outer shear layer phase velocities
are lower than the inner shear layer phase velocities due to lower mean flow velocities,
but they also decrease with Strouhal number as do the inner shear layer phase velocities.
These calculations are conducted until the phase velocity approaches the mean flow ve-
locity at the U merge line. As this happens, the damping rates start increasing toward
larger values. Then, in the stability calculations, the critical point typically goes beyond
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the region where the mean flow values in the complex plane are accurately calculated
by analytic continuation. The calculations are stopped and the results are extended
downstream as previously described.

The instability wave characteristics are similar in both the inner and the outer
shear layers for all the Strouhal numbers used in the n = 0 mode calculations. As was
shown from the single jet calculations in the previous chapter, the inviscid calculations
cannot be continued in the axial direction beyond some point after the wave becomes
damped and approximations are used to extend the instability wave characteristics fur-
ther downstream. The n = 1 mode inviscid calculations for the single jet are not found
to have any such limitations. The calculations are continued into the inviscid damped
region in the axial direction as far as the mean flow is calculated. For the normal profile
coaxial jet, the question arises of what happens to the two initially growing instability
waves as the streams merge downstream into a single fully developed jet. This single
jet would only have one n = 1 mode inviscid damped solution. So, could two stability
solutions merge into one stability solution like the two shear layers merging into one
shear layer? Figure 4.3 shows typical results from the stability calculations for a nomal
velocity profile jet. With two shear layers, each having an initially growing instability
wave, only one of the two has a continuous solution into the downstream damped region
of the single fully developed jet. The shear layer with the larger AU supports the lower
Strouhal number waves that are continuous into the damped region and the shear layer
with the smaller AU supports the higher Strouhal number waves. As can be seen from
comparing Figures 4.3(2) and 4.3(b), if the instability wave characteristics are continuous
into the damped regjon in one shear layer, it is not continuous into the damped region in
the other shear layer. The non-continuous instability wave characteristics become highly
damped in the same manner as seen in Figure 4.2(b) for the » = 0 mode. Again, in
the stability calculations, the critical point goes beyond the path where accurate mean
flow calculations by analytic continuation are available. The concept of two eigenval-
ues merging is suggested by the behavior of the phase velocities. The inner shear layer
phase velocities in Figure 4.3(a) decrease to the single jet phase velocity as the solution
progresses downstream. In the outer shear layer, Figure 4.3(b), the phase velocities in-
crease to the single jet phase velocity. No indication is found in the continuous damped
eigenvalue solution that any other damped solution is nearby to suggest that the two
solutions merge as the mean flow becomes fully developed.

Figure 4.3(a) shows that the initial growth rates in the inner shear layer for the
n = 1 mode increase with Strouhal number. Unlike the n = 0 mode, these instability
waves begin to damp at or soon after the end of the merge region. The phase velocities
gradually increase with Strouhal number.

For the outer shear layer, the n = 1 mode growth rates shown in Figure 4.3(b)
initially increase with Strouhal number and are much larger than the inner shear layer
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Figure 4.3. Growth rates and phase velocities for normal profile with r = 0.6 and
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growth rates. But, like the n = 0 mode, these growth rates decay more quickly than the
inner shear layer growth rates, except for the Strouhal number .06 growth rates.

The growth rate and phase velocity results shown in Figures 4.2 and 4.3 are
typical for all the normal velocity profile results. There are differences in growth rate,
especially, due to varying velocity and temperature ratios between the two streams.
But, the characteristics of the instability wave can also be considered in the wavenumber
domain where it is found to be easier to compare the different normal velocity profile
cases.

4.1.3 Wavenumber Spectra

Figure 4.4(a) shows the wavenumber spectra for the n = 0 mode instability wave
characteristics plotted in Figure 4.2 and Figure 4.4(b) shows the the wavenumber spec-
tra for the n = 1 mode plotted in Figure 4.3. In Figure 3.9 we noted oscillations in the
n = 0 wavenumber spectrum at wavenumbers higher than the main peak that manifested
themselves in the far field directivity pattern. These oscillations are due to insufficient
damping of the downstream propagating instability wave. Since in those previous cal-
culations with insufficient damping, the n = 0 mode far field peak closely resembled the
peak from calculations with sufficient damping, we avoid confusion in the presentation of
the n = 0 mode wavenumber spectrum results and make the plots more clear by simply
cutting off the higher wavenumber oscillations and concentrating on the main peak.

The wavenumber spectrum shows the amplitudes of each wavenumber component
of a growing and decaying instability wave. The spectrum amplitude is related to the
growth rates. In general, the faster the instability wave grows and decays, the wider the
spectrum becomes. Also, the peak amplitude of the wavenumber spectrum is propor-
tional to the peak amplitude of the instability wave. Thus, for an instability wave that
grows rapidly to a high amplitude and decays rapidly will have a wavenumber spectrum
that covers a wide spectrum range and has a high peak amplitude. Alternatively, an
instability wave that grows slowly to a high amplitude and decays slowly will have a
narrow spectrum range with a high amplitude. There are other combinations of growth
and decay and amplitude. The location of the wavenumber spectrum peak is related to
the phase velocity of the instability wave. At a given frequency, the wavenumber is in-
versely proportional to the phase velocity. Thus, the peak of the wavenumber spectrum
will move to higher wavenumbers as the phase velocity decreases. These wavenumber
spectrum characteristics are found in Figure 4.4 when the growth and phase velocity
results in Figures 4.2 and 4.3 are translated to the wavenumber domain.

The wavenumber spectra for the n = 0 mode, Figure 4.4(a), show that the inner
shear layer instability waves have higher spectral peaks than the outer shear layer in-
stability waves. Even though the outer shear layer instability waves had higher initial
growth rates, they grew to and decayed faster from a lower peak amplitude than the inner
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shear layer instability waves. In contrast, the wavenumber spectra for the n = 1 mode,
Figure 4.4(b), show a shifting in peak spectral amplitudes between the two shear layers.
The instability waves in the inner shear layer have the lowest spectral peak at Strouhal
pumber .06 and the peaks increase in amplitude with each higher Strouhal number. The
opposite is seen for the outer shear layer instability waves where the spectral amplitudes
decrease with Strouhal number. Note that the highest spectral peaks at each Strouhal
number are not necessarily related to those n = 1 instability wave characteristics that
were continuously calculated into the downstream damped region. The maximum am-
plitude is determined from the integration of the growth rates up to the point where the
growth rate is zero. What happens with the downstream growth rate characteristics after
this point has no influence on the maximum amplitude. Hence, the growth rates for the
outer shear layer instability wave at Strouhal number .12, shown in Figure 4.3(b), give a
higher amplitude spectral peak than the inner shear layer instability wave even though
the stability characteristics are not continuous into the downstream damped region.
Given that the instability wave characteristics can be described in terms of the
wavenumber spectrum amplitude and peak location, we will now consider the effects of
changing operating conditions on the instability wave characteristics presented in the
wavenumber domain. We will make comparisons for varying velocity ratio r at constant
s = 1 and for r = .8 and .4 with varying s. Wavenumber spectra will be shown at
constant Strouhal numbers where results are available for all operating conditions and
that inflectional instability waves exist in both the inner and the outer shear layers.
Figure 4.5 shows instability wave spectral amplitudes for both inner and outer
shear layers with r varying from .4 to .8. With the Strouhal number fixed at .20, the
results are shown for the n = 1 mode. Compared to the reference jet, the outer shear
layer wavenumber spectra are generally decreasing in amplitude as 7 decreases which
lowers AU across the outer shear layer. For the r = .4 case, the compensating effect of
temperature may be a factor in the increased spectral amplitude compared to the 7 = .6
case. Even though AU has decreased by about the same amount from .8 to .6 to .4, the
outer stream temperature has dropped much more from .6 to .4 than from .8 to .6. Seiner
et al. [1993] have shown in single jet calculations that the effect of increasing the jet flow
temperature relative to a constant ambient temperature is to decrease the growth of the
instability wave. Thus, in the opposite sense, decreasing the jet flow temperature on
the high speed side of the shear layer increases the growth of the instability wave. A
consequence of holding the thrust, mass flow, and exit area constant is the interaction
of velocity and temperature effects on instability wave growth and decay. One tends
to increase growth and the other tends to decrease it. We end up with results like
those shown in Figure 4.5(a) where the decrease in AU is not as effective in lowering
instability wave growth as the decrease in temperature is in promoting instability wave
growth. For the inner shear layer results, shown in Figure 4.5(b), the temperatures for
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the two streams are the same on both sides of the shear layer. Hence, the wavenumber
spectrum grows in amplitude from r = .8 to .4 where for the inner shear layer, AU
is increased. At r = .4, the wavenumber spectrum has a higher amplitude than the
reference jet spectrum. This result is supported by the work of Michalke and Hermann
[1982] where it was shown that an external flow could increase instability wave growth
rates at higher frequencies for 0 < U / AU < 1. For our case r = .4, the inner shear
layer flows lie within these limits, U, / AU = .67. Thus, it is reasonable to see the r = .4
wavenumber spectrum with an amphtude that is higher than the reference jet spectral
amplitude where the jet flow has no external velocity.

A suggested method for describing the effects of velocity and temperature on
compressible shear layer instability wave growth is to correlate the results by using
the convected Mach number. Zhuang et al. [1990] used this approach to correlate the
normalized maximum spatial growth rates of disturbances in a planar compressible free
shear layer. Their results were similar to the fit line in Figure A.3. As the convected Mach
number of the shear layer increased, the normalized maximum growth rate decreased
where the compressible growth rate was normalized by the incompressible growth rate
at the same velocity and temperature ratios. This approach works well for single shear
layers. No correlation of instability wave maximum amplitude with convected Mach
number was found in this study for coaxial jets with different inner and outer shear
layer conditions. Since the stability characteristics of one shear layer in a coaxial jet are
affected by the presence of the other shear layer, (This will be shown later in an example
using an inverted velocity profile.) it may be necessary to obtain incompressible growth
rates in coaxial jets to provide useful normalizations of compressible results.

The wavenumber spectral amplitude results for constant r and varying s are
shown in Figure 4.6 for r = .8 and Strouhal number .20 and in Figure 4.7 for r = 4
and Strouhal number .12. In general, the shear layer with the larger AU has higher
growth rates; that is the outer shear layer for r = .8 and the inner shear layer for r = 4.
For both outer shear layer plots, Figures 4.6(a) and 4.7(a), the outer stream velocity
differences are much smaller than the temperature differences. Thus, the growth rates
are heavily influenced by temperature. As inferred earlier from Seiner et al. [1993], the
cooler temperature stream has higher growth rates than hotter temperature streams.
For the inner shear layer, using the s = 1 result as reference, Figure 4.6(b) for r = .8
shows that the cooler inner stream relative to the outer stream, s = .5, again results
in higher wavenumber spectral amplitudes. Conversely, for a hot inner stream relative
to the outer stream, s = 2, results in lower amplitudes compared to the s = 1 case.
The same trend is seen in Figure 4.7(b) for r = .4. The locations of the peaks in the
wavenumber spectra are not much affected by varying s as long as the peak wavenumbers
have supersonic phase velocity relative to ambient. The largest shift in the peak location
is seen for the s = .5 curve in Figure 4.7(a). The outer stream for this case is subsonic
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and as a result of the low phase velocity, the wavenumber of the peak is much higher
than the wavenumber of the peaks with supersonic phase velocities.

4.1.4 Near Field Pressure Contours

Examples of near field pressure contours are shown in Figures 4.8 to 4.11. Each
figure compares the near field pressure contours with the lowest far field peak level
from the coaxial jet to the near field pressure contours for the reference jet at the same
Strouhal number. The amplitude levels shown are arbitrary; but for comparison, they
all have the same reference level. In general, the coaxial jet near field pressure levels are
lower than the reference jet pressure levels and the source location has shifted towards
the nozzle. The shift in source location is due to the shortened potential core lengths in
the coaxial jet compared to the reference jet. In Figure 4.8(b), the coaxial jet near field
pressure contour calculation used the inner shear layer instability wave. The other three
coaxial jet contour calculations used the outer shear layer instability wave. Notice that
the contour for the inner shear layer instability wave has a larger directivity angle to the
jet axis than the reference jet. The outer shear layer instability wave near field contours
have comparable angles to the reference jet. This will be more easily seen in the far field
directivity patterns.

4.1.5 Far Field Directivity Patterns

The calculated far field directivity patterns for each Strouhal number are shown
in Figures 4.12 and 4.13 for the = 1 mode. The amplitude level is arbitrary, but,
again, for comparison purposes, all the curves have the same basis. Each figure shows
eight curves: one for the reference jet and seven for the highest far field peak amplitude
generated from each coaxial jet at that Strouhal number.

The far field directivity patterns for Strouhal number .06 are shown in Fig-
ure 4.12(a). All except one of the curves are hased on the outer shear layer instability
wave. The r = .4, s = .5 case is based on the inner shear layer instability wave. Note that
this curve has a symmetrical peak with a maximum amplitude located at a larger angle
to the jet axis than the other seven outer shear layer based curves. This characteristic
difference in peak angle location between inner and outer shear layer based directivity
patterns is seen in all the data. All the operating conditions lower the far field peak
amplitude relative to the reference jet. The trend toward lower peaks based on the outer
shear layer instability waves follows a decrease in r and a decrease in s. For example, the
thick dashed lines show a decrease in peak amyplitude for a fixed r = .8 and a decreasing
s.

The Strouhal number .12 far field directivity results are shown in Figure 4.12(b).
More curves based on the inner shear layer instability wave are dominant here than at
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Strouhal number .06. All have r = .4. Two patterns are emerging in this figure. One is
the continuance of the pattern seen in Figure 4.12(a). Starting at the reference jet peak,
the peaks decrease as r decreases and as s decreases. These peaks are all based on the
outer shear layer instability wave. The second pattern relates to the far field peaks based
on the inner shear layer instability waves. As the Strouhal number has increased, more
of these peaks have higher amplitudes than the outer shear layer based peaks. At this
Strouhal number, the inner shear layer peaks increase as s decreases. In a sense, these
opposite results for the inner and outer shear layer based far field directivity patterns
as s decreases is expected since the inner high speed stream is getting cooler relative to
the outer low speed stream, promoting instability wave growth in the inner shear layer
and higher far field directivity peaks, and the outer stream is getting hotter relative to
ambient, inhibiting instability wave growth in the outer shear layer and lower far field
directivity peaks.

Figure 4.13(a) shows the far field directivity patterns for Strouhal number .20.
The two patterns established in Figure 4.12(b) are being extended with increasing levels
for the inner shear layer based peaks and decreasing levels for the outer shear layer based
peaks. The r = .6 case has changed to being inner shear layer dominated. This implies
that the amplitude of the inner shear layer peak increases as r decreases or as AU of
the inner shear layer increases. Some of the inner shear layer peaks are now higher in
amplitude than the reference jet.

The highest Strouhal number .40 far field directivity results are shown in Fig-
ure 4.13(b). The inner and outer shear layer peaks follow the established pattern as
Strouhal number has increased. Now most of the inner shear layer peaks are clearly
larger than the reference jet peak. Following Kwan and Ko [1976), using local Strouhal
numbers may show that a more preferred frequency for instability wave growth may exist
in the inner shear layer than in the reference jet shear layer. For example, the inner shear
layer case of r = .4, s = .5 has a local Strouhal number of .19 based on the inner jet exit
diameter and AU across the inner shear layer. The reference jet showed greater growth
at Strouhal number .2 than at .4. Hence, the inner shear layer peaks that are higher
than the reference jet peak may be due to instability waves growing at more preferred
local Strouhal numbers.

The n = 0 mode far field directivity patterns are shown in Figures 4.14 and 4.15.
With two exceptions, the coaxial jet peaks are dominated by the inner shear layer in-
stability wave based peak. The exceptions are the r = .8, 8 = 2 cases for Strouhal
numbers .12 and .20. The pattern for the coaxial jet peaks is the same for each of the
four Strouhal numbers. The peak levels increase as r decreases and as s decreases. The
same pattern as for the n = 1 mode far field directivity patterns. The levels of the n = 0
mode peaks are generally lower than the n = 1 mode peaks; but many more of the n = 0
mode peaks are higher than the reference jet compared to the » = 1 mode.
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The effects of the different operating conditions on the peak direction is deter-
mined by whether the dominant peak is based on either the inner or the outer shear
layer instability wave. The reference jet peaks and the outer shear layer peaks have their
peak directions at angles closer to the jet axis than the inner shear layer peaks. Though
there are some changes in direction due to operating conditions within the same family
of inner or outer shear layer peaks, the biggest change is due to a change in the dominant
peak from being based on the outer shear layer to being based on the inner shear layer.

Finally, we note for the normal profile cases that the r = .8, s = 1 and r = .8,
s = 2 cases are the only ones with far field directivity peaks that are less than the
reference jet for both n = 0 and » = 1 modes and all four Strouhal numbers. This is
especially true for the n = 0 mode. The reference jet levels are higher for the n = 1
modes than the n = 0 modes, so reductions of those levels would be of more immediate
benefit. The typically larger reductions for r = .8, s = 1 range from 3 to 8 dB for the
n = 1 modes. The n = 0 modes have reductions of 1 to 5§ dB. Tanna [1980] commented
that shock free normal velocity profile coaxial jets could be quieter than the reference jet
for 7 close to 1 and s < 1. Support for this conjecture appears in the r = .8, s = .5 far
field directivity where reductions in the » = 1 modes are of the order of 10 dB. However,
there are slight gains in level for some n = 0 mode frequencies which may or may not be
significant in terms of overall noise level reductions. In general, the notion that normal
velocity profile supersonic jets may be quieter than the reference jet for r close to 1 and
s < 1 is supported by this evidence.

4.2 Inverted Velocity Profile

The study of supersonic coaxial jets with initial inverted velocity profiles is con-
ducted with the jets operating at the minimum noise condition. The extensive data sets
from Dosanjh et al. [1969, 1970] and Tanna et al. [1985) showed the benefits of operat-
ing at this point in reducing shock associated noise and the flow, though not originally
perfectly expanded, had the characteristics of a fully expanded flow downstream of a
composite shock near the nozzle exit. The remaining noise would be dominated by mix-
ing and thought to be modifiable by changing operating conditions. The criterion that
is to be maintained, however, is the minimum roise condition where the inner stream is
slightly supersonic with a pressure ratio of aboat 1.9. This fixes the inner stream Mach
number M 1 Then, from constant thrust, we find that the outer stream Mach number
is given by | 12

M (1 + ) -u
M, = L
2 A
%,

, (4.5)
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fixing its value. M_is the reference jet Mach number. Equation (4.1) can be written in
the form

M. A
i,

U | = Ue Z A
(- 25%)
which sets U, and U, follows from (4.3). The static temperatures in each stream are
determined from the deﬁmtlon of the Mach number and s is determined from the ratio
of T1 / T2. Thus, for a given area ratio and a set of reference jet operating conditions, 7 is
the only variable that sets all the operating parameters at the minimum noise condition
for inverted velocity profile jets. The parameters chosen for study are given in Table 4.1.
The presentation of the inverted velocity profile results follows the same format as
the normal profile results. There are similarities in the results that are discussed in the

section above on normal velocity profiles and will not be repeated. We will concentrate
on discussing features that are important for understanding the inverted profile results.

(4.6)

4.2.1 Mean Flow Results

A typical inverted velocity profile result is shown in Figure 4.16 in the same
format as the normal velocity profile. In this case, when the two shear layer merge, a
local maximum velocity exists in the flow that moves towards the jet axis before the jet
becomes fully developed. The location of this velocity is labeled Umu in Figure 4.16(a)
and extends from the end of the outer potential core tip and moves to the jet axis
downstream. This plot is very similar to that shown in Au and Ko [1987] for measured
data from a subsonic jet. Along with the edges of the inner and outer potential cores,
the figure shows the location of the half velocity point between the maximum velocity
and the outer edge velocity of the outer shear layer.

The basic mean flow properties for each of the five calculated inverted velocity
profiles are shown in Figure 4.16(b) in terms of the location of the outer potential core
tip, the location of the inner potential core tip, and the location where U reaches
the jet axis (also called the reattachment point). For the given operating condmons that
result in fixed Mach numbers in both the inner and outer streams, as r increases and
temperatures adjust accordingly, both potential cores shorten in length. The location of
Umaz on the axis, however, moves further downstream as the outer stream velocity has
increased.

4.2.2 Instability Wave Characteristics

Figure 4.17 shows the instability wave characteristics of the n = 0 mode for both
the inner and outer shear layers of an inverted velocity profile with r = 1.75 and s = 2.07
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Figure 4.16. Calculated mean flow data for inverted profile coaxial jets. (a) typical
mean velocity profile, r = 1.75, s = 2.07; (b) location of potential core tips and maximum
velocity point on the axis for inverted velocity profile operating conditions, Table 4.1
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(Case #24 in Table 4.1). The n = 1 mode instability wave characteristics are shown in
Figure 4.18. The inner shear layer instability wave characteristics are similar for both
the n = 0 and n = 1 modes, part (a) of each figure. The growth rates have about the
same initial values for both modes and the initial growth rates increase with Strouhal
number. The phase velocity is fairly constant in the potential core region with a slight
decrease with Strouhal number. The instability waves become damped near the end
of the outer potential core for most Strouhal numbers and before the end of the inner
potential core for the lower Strouhal numbers. The inner shear layer ends when Umaz
reaches the jet axis and thus ends any stability calculation of the inviscid inflectional
type of growing or damped waves. In order to complete the damped behavior of the
inner shear layer instability wave, the damped characteristics are extended downstream
in the manner previously described.

The outer shear layer instability wave calculations are completed in the same
manner as a single jet shear layer. The n = 0 mode calculations, Figure 4.17(b), are
completed until the phase velocity approached Umaz. The approximate extension of the
instability wave characteristics is added after this point. The n = 1 mode calculations are
completed into the damped region as far downstream as the mean flow is available, see
Figure 4.18(b). Both the n = 0 and n = 1 mode characteristics show abrupt changes at
the locations where the inner and outer potential cores end. They are most pronounced
in the n = 1 mode growth rate curves. The initial growth rates increase with Strouhal
number; but as the instability wave solution progresses downstream, the growth rates
decrease more quickly as Strouhal number increases. All the instability waves become
damped before Umaz reaches the jet axis. For the phase velocity, the n = 0 mode
shows them staying within a small range for all the Strouhal numbers. In contrast, the
n = 1 mode phase velocities spread out with changing Strouhal number as the instability
waves progress downstream toward their peak and then damp out. In all cases, the phase
velocities are supersonic relative to ambient conditions.

4.2.3 Wavenumber Spectira

The wavenumber spectra for the growth rates and phase velocities plotted in
Figures 4.17 and 4.18 are shown in Figure 4.19 for both » = 0 and n = 1 modes. It is
immediately seen that the outer shear layer instability waves have much larger amplitudes
than the inner shear layer instability waves. This is true for all five inverted profile cases.
Hence, we will concentrate our remaining discussion on the instability waves in the outer
shear layer and their noise generation characteristics.

Figure 4.20 shows all the wavenumber spectra for the outer shear layer, n = 0
mode, instability waves for the four Strouhal numbers. As r increases, the spectral peaks
continually increase for the Strouhal number .06 case. As Strouhal number increases, we
see that the peak amplitude is maximum for r = 3.55 and lower at other values. The outer
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shear experiences the conflicting effects on the growth of the instability wave of velocity
and temperature. With increasing r, the outer stream maximum velocity increases which
increases the radial velocity gradients and increases the growth rates of the instability
wave. In addition, to maintain minimum noise conditions, as r increases, the outer stream
temperature increases, also. The increased temperature has the tendency to decrease
growth rates. Somewhere in the vicinity of r = 3.55 for the higher Strouhal numbers,
a balance between these two effects exists. Below this point, the high outer stream
velocity has a greater impact, and above this point, the high outer stream temperature
has a greater impact. The change in peak amplitude with increasing = is accompanied
by gradual increases in the wavenumber of the peak. This is indicative of a decrease in
phase velocity for the instability wave.

The wavenumber spectra for the outer shear layer, » = 1 mode, instability waves
are shown in Figure 4.21. These peaks grow in amplitude and change little in wavenumber
location as r increases. Unlike the » = 0 mode, the n = 1 mode instability waves are
not being affected as much by temperature as by velocity. For Strouhal numbers .06
and .12, Figure 4.19 shows that the n = 1 mode clearly has higher amplitudes than the
n = 0 mode. These n = 1 lower Strouhal number instability waves become even more
dominant as r increases. At the two higher Strouhal numbers, Figure 4.19 shows that
the n = 0 mode is dominant over the » = 1 mode for the lowest inverted profile velocity
ratio, r = 1.75. However, the n = 1 modes grow to very dominant amplitudes over the
n = 0 modes as r gets larger than 2.9.

4.2.4 Near Field Pressure Contours

The near field pressure contours generated from the outer shear layer, n = 1
mode instability waves of the inverted velocity profile case with r = 1.75 and s = 2.07
(Case #24 in Table 4.1) are shown in Figures 4.22 and 4.23 for each of the four Strouhal
numbers. These figures should be compared to the reference jet near field pressure
contours shown in parts (a) of Figures 4.8 to 4.11. We see that these coaxial jet contours
have higher levels at all Strouhal numbers and that the directionality has shifted towards
downstream from the reference jet direction. Since the directional characteristic of the
near field pressure contours is related to the location of the peak in the wavenumber
spectrum, the near field pressure contours for higher r, which showed little change in
peak location as seen in Figure 4.21, are the same as the ones shown for r = 1.75, but
with much higher amplitudes.

4.2.5 Far Field Directivity Patterns

The high amplitude levels already shown in the wavenumber spectra in Figure 4.19
are now confirmed in the far field. Figure 4.24(a) shows directivity for the » = 0 mode
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and Figure 4.24(b) shows directivity for the n == 1 mode. The amplitude levels have the
same basis as the normal velocity profile far field plots shown earlier. The wavenumber
spectra in Figure 4.19 have been translated to the far field with the same amplitude
relationship between the peaks and the spectral peaks with higher wavenumber have
larger angles to the jet axis in the far field. All the peaks are closer to the jet axis than
the reference jet peaks for both » = 0 and » = 1 modes. (Compare to reference jet
results in Figures 4.12 to 4.15.) This confirms what is seen in the near field pressure
contours in the previous section.

The far field directivity results for all the inverted velocity profile cases are shown
in Figure 4.25, for the n = 0 mode, and in Figure 4.26, for the n = 1 mode. Both
figures only show directivities for Strouhal numbers .20 and .40. As expected, the levels
are much larger than the reference jet, which has peak levels less than the lowest level
shown in these figures, and follow the pattern set in the wavenumber spectral plots.
The directivity for the n = 0 mode shifts toward the jet axis as r increases. The peak
amplitude level increases as r increases from 1.75 to 3.55 and then decreases at r = 4.10.
For the n = 1 mode, the amplitude continually increases with increasing r and the
direction gradually shifts toward the jet axis. Tanna [1980] concluded that shock free
inverted velocity profile jets were noisier than the reference jet at high frequencies, but
significantly quieter at low frequencies. The results from Figures 4.22 to 4.26 show only
higher amplitude levels than the reference jet and for the most part as r increases, the
noise level increases. Thus, we have not found any noise reduction benefit for the chosen
operating conditions. The minimum noise condition constraint has fixed s for a given
area ratio. If there is any benefit to having a different s at the same r, the area ratio
needs to be changed.

4.2.6 Discussion

The results we have shown for inverted velocity profile supersonic coaxial jets have
a fixed area ratio of 1.25 leaving the velocity ratio r as the only independent variable
for determining operating parameters for the given test conditions. Those conditions are
that the inverted profile jet is operated at minimum noise conditions with total thrust,
total mass flow, and total exit area equivalent to the reference jet. From the chosen
operating conditions, we calculate instability waves with higher amplitudes in the outer
shear layer of an inverted velocity profile jet than the amplitude for the instability waves
in the reference jet shear layer. The calculations are conducted for different jets at
constant physical frequency. A concern with this approach that exists for both the
normal velocity profile jets and the inverted velocity profile jets is that the unstable
characteristics of the jet shear flows are scaled with constant Strouhal number. Under
the constant Strouhal number approach, the stability characteristics would be similar
for jets with constant Strouhal number but bave different velocities, diameters, and
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Figure 4.24. Far field directivity patterns for inverted profile with r = 1.75 and s = 2.07.
(Case #24 in Table 4.1) (a) n=0; (b)) n =1
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Figure 4.25. Far field directivity patterns for inverted velocity profile cases. (a) St = .20,

n=0;(b) St=.40,n=10
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frequencies. Thus, stability characteristics that have been described as different for
different operating conditions, but at the same physical frequency, may be similar if
results are compared at the same local Strouhal number. With that in mind, we ran a
test case where a single jet shear layer is compared to the outer shear layer of a coaxial
jet.

Using the inverted profile case with s == 1.01 (Case #20 in Table 4.1) to define
the single jet operating conditions (U = 1552.9 m/s and T = 937.9 K), the single jet
mean flow was numerically calculated starting with the same initial conditions as the
outer shear layer of the coaxial jet. In the mean flow calculations, the outer shear layer
is unaffected by the inner shear layer until the shear layers merge. Hence, by starting
with the same initial conditions, the single jet shear layer and the outer shear layer of
the coaxial jet had the same spreading rates until the outer shear layer merges with the
inner shear layer.

The calculated instability wave growth rates and phase velocities for the single
jet and the coaxial jet mean flows are shown in Figure 4.27. The Strouhal number
ch / Uc is based on the equivalent jet operating conditions and it is used to calculate
the instability wave characteristics of the outer shear layer of the coaxial jet. The single
jet uses U2, the outer stream velocity of the coaxial jet which is the same as the single
jet velocity, to calculate the Strouhal number. Converting the Strouhal number .06 to
outer shear conditions, we get .05. Thus, the two lower Strouhal numbers are the same
in terms of outer shear layer conditions which are the same as the single jet shear layer
conditions. The expectation is that, initially, the two shear layers would have the same
stability characteristics. However, the calculations show that the single jet has lower
growth rates and higher phase velocities than the outer shear layer growth rates and
phase velocities. The same relationship exists between the two results for the Strouhal
number .40 calculations. Thus, it appears that matching Strouhal numbers based on
outer stream conditions for a coaxial jet and based on a single jet with the same mean
flow conditions is not sufficient to get similar stability characteristics. The inverted
velocity profile in a coaxial jet affects the stability characteristics in the outer shear
layer. The resulting growth rates are initially larger than the growth rates of a single jet
with the same shear layer spreading.

At first glance, it would seem that the increase in noise levels for inverted velocity
profile jets compared to the reference jet is in contradiction to data given in the refer-
ences. It must be recalled that most of those claims were for shock containing jets where
overall levels were reduced by minimizing shock associated noise. Though Dosanjh et
al. (1969, 1970] claimed some reductions at all frequencies, Tanna et al. [1985] did not,
citing nozzle differences. They both, however, ran their experiments with nozzle exit
area ratios less than one. Nozzle exit area ratio is the only other factor available besides
velocity ratio r for affecting operating parameters. In our study, it was held fixed at
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1.25. To test for any benefits of reducing the area ratio, we ran a test case with area
ratio less than one.

Figure 4.28 shows the results from stability and far field directivity calculations
for the case with area ratio 1.25 and r = 4.10 (Case #23 in Table 4.1) and a case with
area ratio .5 and r = 4.10. The operating conditions for the latter case have been held
to the same total thrust, total mass flow, and total exit area conditions relative to the
reference jet as all the other inverted profile cases. The resulting operating conditions
are U1 = 4929 m/s, U2 = 2020.9 m/s, T1 =601.1 K, and T2 = 1017.0 K. This increases
the temperature ratio s from .37 for area ratio 1.25 to .59 for area ratio 0.5 and the
outer stream Mach number increases to 3.2. To make this comparison test, we chose the
case that generated the largest far field directivity levels of any of the inverted profile
calculations. Hence, any benefits to reducing area ratio appears in a worst case scenario.
The calculations are performed at Strouhal number .40 for the n = 1 mode. The stability
characteristics for the two cases are compared in Figure 4.28(a). Even though the outer
stream has a higher initial velocity in the lower area ratio case, its smaller thickness
results in a shorter potential core and increased mean flow spreading when the shear
layers merge. This results in a faster decrease for the growth rates of the outer shear
layer instability wave for the lower area ratio case than for the higher area ratio case.
The lower instability wave amplitude translates to a lower far field directivity peak as
shown in Figure 4.28(b). Thus, for our worst case, we have shown some benefit of using
coaxial nozzles with area ratios less than one compared to coaxial nozzles with area ratios
greater than one.
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Chapter 5

CONCLUSIONS AND RECOMMENDATIONS
FOR FUTURE WORK

The noise generation from supersonic coaxial jets has been studied in this paper by
extending the instability wave, noise generation model for single stream, axisymmetric
jets to dual stream, coaxial jets. For high speed, perfectly expanded, axisymmetric
jets, the instability waves or large scale coherent structures dynamically control the
development of the free jet shear flow and when the instability wave phase velocity
exceeds the ambient speed of sound, these waves are the dominant source of mixing
noise radiated into the downstream arc of the jet. Linear instability wave analysis is
applied to the jet shear layer to obtain the characteristics that describe a growing and
decaying instability wave and, subsequently, predict the radiated noise. These concepts,
which have been applied to single jets with a single spreading shear layer, are now applied
to a coaxial jet with two spreading shear layers.

Much of the theoretical work on the stability of free shear flows relies on the
analytical definition of the mean flow in order to solve for the stability characteristics.
Experimental measurements of shear flows provided evidence for functional forms to de-
scribe the mean flow in stability calculations. Such mean flow data are lacking for two
stream coaxial jets, especially at supersonic conditions. The data that are available are
not sufficient to develop analytical expressions for mean flow properties of coaxial jets
that smoothly transition from two streams to one fully developed jet downstream for
both normal velocity profile and inverted velocity profile cases. Hence, it was neces-
sary to develop a numerical scheme to calculare the mean flow properties of a coaxial
jet with two initial shear layers that expanded and merged in an orderly fashion in the
downstream direction. The development of a turbulent, axisymmetric free jet was as-
sumed to be governed by the Reynolds averaged, compressible, parabolic boundary layer
equations. To complete this set of equations, a turbulence model was necessary. Any
turbulence model chosen for these calculations would have required modification and
calibration to obtain reasonable results for both normal and inverted profile coaxial jets.
For expediency, a modified and calibrated mixing length model was used to represent the
turbulent stresses and obtain an effective viscosity. The resulting mean flow calculations
gave good qualitative resemblance to measured single and coaxial jet flows.

The stability analysis was completed for « slowly diverging free jet shear layer with
the assumption that the mean static pressure was constant. To lowest order inside the
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jet, the analysis resulted in an eigenvalue problem based on the compressible Rayleigh
equation that gave local growth rates and phase velocities at each axial location as the
mean flow developed. These local stability characteristics were used to calculate growing
and decaying instability waves in the jet shear layers. Outside the jet, the instability
wave was the source for near field pressure disturbances and for those instability wave
components with supersonic phase velocities relative to ambient, the instability wave was
the source of far field radiated noise. The results from stability calculations conducted for
single Mach 2 jets in this study using numerically generated mean flow profiles compared
favorably with results from studies using analytical formulations to describe the mean
flow. Comparisons were also made for our analysis of instability wave noise generation
in coaxial jets to far field noise data from low Mach number coaxial jets. The directivity
of the calculated far field peak agreed with measured directivity.

With the ability to numerically calculate mean flow profiles for both normal ve-
locity profile and inverted velocity profile supersonic coaxial jets and to use those results
to calculate the stability characteristics of both shear layers, we conducted a paramet-
ric study of the effects of various operating conditions on the instability waves in and
the subsequent noise generation from these jets. The scope of the study was limited to
shock free flow conditions from a fixed area ratio nozzle. This allowed us to concentrate
on the effects of modifying the mean flow profile shape in a coaxial jet as a means to
reduce mixing noise. The normal velocity profiles were studied with variations in both
velocity and temperature ratio between the two streams. The inverted velocity profiles
were studied at minimum noise conditions. This fixed the temperature ratio for a given
velocity ratio. The conclusions from the normal velocity profile study are:

1. The predicted noise reductions for normal velocity profile coaxial jets depended on
operating conditions and frequency. For most operating conditions, the radiated
noise levels increased with Strouhal number and became higher than the reference
jet noise levels.

9. Over the Strouhal number range of 0.06 to 0.4 used in this study, noise reductions
were found at all Strouhal numbers within that range when the velocity ratio was
0.8. Noise reductions were noted for both normal and inverted temperature profiles.
For the practical case of a normal temperature profile, the noise reductions ranged
from 2 to 8 dB.

3. Using inviscid linear stability analysis, the stability characteristics of two, initially
growing, n = 1 mode, instability waves, one in each of the two shear layers of a
normal profile jet, do not merge downstream as the jet flow expands into a single
fully developed jet. One instability wave will rapidly damp out and the other
instability wave will damp out in a smooth transition according to the stability
characteristics for the single jet.
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The conclusions from the inverted velocity profile study are:

1. The inverted velocity profile coaxial jet radiated more mixing noise than the refer-
ence jet when operated at conditions for minimum shock noise and with area ratio
greater than 1.0.

2. The minimum noise condition restricts the choice of operating conditions. When
operating at minimum noise for a given velocity ratio, it was inferred that choosing
the area ratio to minimize the length of the outer stream potential core would result
in the least radiated noise.

3. The amplitudes of the inner shear layer instability waves were significantly less than
the amplitudes of the outer shear layer instability waves. Hence, their contributions
to peak far field noise generation can be ignored.

4. The initial stability characteristics of the outer shear layer were affected by the
presence of the inner shear layer in the mean flow profile. The initial growth rates
for the instability in the outer shear layer were increased above the growth rates
for the instability in a single jet with the same shear layer.

The limitations of this study are many. The restriction that the coaxial jets be
compared to a reference jet at the same total thrust, total mass flow, and total exit area
results in instability wave growth and decay that is affected by interactions between ve-
locity and temperature. The combining of these effects through convected Mach number
correlations did not prove useful either because of the complications with two merging
shear layers with different velocity and temperature ratios or that growth rates need to
be normalized by incompressible coaxial jet growth rates at the same velocity and tem-
perature ratios. Another restriction was the fixing of area ratio to reduce the number
of independent variables for the given reference jet conditions. This restriction was not
especially noticeable in the normal velocity profile study since variations in velocity and
temperature ratio allowed a varied range of operating conditions to be achieved. When
the additional restriction of minimum noise condition was added to the inverted veloc-
ity profile study, fixing area ratio reduced the number of independent variables to one.
Thus, the possibility of missing any optimum operating condition for reduced mixing
noise was increased and in this study, no optimum was found. The use of the mini-
mum noise condition was an acknowledgement that real supersonic flows would contain
shocks. The noise associated with shocks is at a minimum for those operating conditions
and the remaining noise is from mixing, which we are attempting to reduce. Thus, the
suitable noise levels from a reference jet may not be the purely mixing noise levels in
this study, but may require a shock containing reference jet. Given that this study is
a first attempt to analyze the instability wave noise generation from supersonic coaxial
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jets with numerically generated mean flow profiles, we have only scratched the surface
of the many variations that exist in this problem and further research is necessary.
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Appendix A

CALIBRATION OF
MIXING LENGTH MODEL FACTORS

A.1 Incompressible Factor C;

For given flow conditions, the mixing length model must provide the effective
viscosity that causes the jet shear layer to spread. C1 is the only factor available
for adjustment in order to get the proper spreading rate when the flow is incompress-
ible. Many have used experimental evidence and arguments about large-scale structures
dominating the development of turbulent shear layers (Some recent references are Di-
motakis [1986], Messersmith et al. [1988], Papamoschou and Roshko [1988], Dimotakis
[1989], Sullins [1989], and Goebel and Dutton [1991]) to develop a prediction for the
incompressible vorticity thickness growth rate 6w/ z as a function of the velocity ratio r
and the density ratio s,

6 1—r](1+3)
—:L = .088 7 -l}—(r\/.; (A.1)
where 7 = U2 / U1 and s = p2/p1. The constant .088 used here is an average of the
constants from the above references when all were converted to vorticity thickness growth
rate either from information given in the reference or from assuming an error function
shape for the velocity profile. Though (A.1) was developed for a planar shear layer, it
was assumed to hold in the initial core region of a jet where there is a constant velocity
at both edges of the shear layer.

The calibration of C’1 was carried out for a range of expected r and s values. Given
r and s, C1 was varied until the calculated vorticity thickness growth rate in the core
region agreed with that predicted by (A.1). To insure that [ dominated the effective
viscosity and the flow was essentially incompressible, the calculations were carried out
on a low speed, large diameter jet such that the Reynolds number was greater than 10
and P >> pie The resulting family of curves were correlated to develop an equation for
C'1 for r < 1 and an equation for r > 1. They take the form,

A(r) + B(r)y/s + C(r)s

Cin9) == By A+ o)

(A2)
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where for r < 1

1 -2.2

A(r) = 6.5919 x 1072 4+ 1.1918 x 10 r — 4.1855 x 10~ 2r
-2.2

B(r) = 1.0880 x 10™! — 2.3578 x 10~ 2r + 6.5642 x 10 %r

C(r) =3.1013x 1072 + 1.6420 x 10 'r — 5.8217 x 10~ 2r>

and, forr > 1

2 -3 2

A(r) = 1.0195 x 10} + 5.1507 x 10~ 2 — 1.6000 x 10"~

B(r) = 6.0287 x 102 4 7.5160 x 10 2r + 1.3818 x 10~ >+2

C(r) = 7.2397 x 1072 + 7.5334 x 10”21 — 6.2101 x 10~ %+

These results are plotted in Figure A.1 for r < 1 and in Figure A.2 for » > 1.

A.2 Compressible Factor C;

Figure A.3 shows a plot of normalized vorticity thickness growth rates versus
convected Mach number for compressible shear layers. The data are taken from the
experimental measurements of Ikawa and Kubota [1975], Lau [1981], Chinzei et al.
[1986], Messersmith et al. [1988], Papamoschou and Roshko [1988], Schadow et al.
[1989], Sullins [1989], Samimy and Elliott [1990], Goebel and Dutton [1991], and Wan-
tuck et al. [1991]. If necessary, the data were converted to vorticity thickness growth
rate either using information given in the reference or from assuming an error function
shape for the velocity profile. A calibration fit to this data is given by

i’—(,M—'-') =1+.785 [e—2 M; _ 1] (A.3)
§

wo

where the convected Mach number is

oy V3 17
M, = MY (A.4)

6;0 is the incompressible spreading rate for the same r and s, and M1 is the Mach
number for the stream with velocity U’ 1

For given r, s, and Ml’ the factor 02 was adjusted, allowing C1 to take on its
value defined by (A.2), until the calculated cormrpressible vorticity thickness growth rate
in the core region agreed with the value predicted by (A.3), when 6;0 is identically given
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by (A.1). The results for C2 were correlated with M to get the following equation:

~1.4593 M2+.0427 M3 3658 M*
C, (M) =1+ 4959 [e( 593 M +.0427 M~ 3658 C)—l}. (A5)

This equation and the data are plotted in Figure A.4.
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Appendix B
SMOOTHING

As the flow of an inverted velocity profile jet progresses downstream, the outer
core eventually ends and the velocity profile exhibits a local maximum between the
two merging shear layer until the jet becomes fully developed further downstream. An
example of this merging velocity profile is shown in Figure B.1 along with its |§u/dr|
profile. Obviously, the |du/dr| profile goes sharply to zero at the local maximum; a
condition that is unrealistic and unacceptable for any turbulence model that depends on
local |@u/dr| conditions. A simple solution to this problem is to smooth this profile.

To avoid the admonition in Press et al. [1986] that smoothing may be more art
than science, we follow the example given in Press et al. [1986] (Section 13.9) and consider
the |0u/0r| profile as a signal whose high frequency components need to be filtered out.
In a Fourier sense, significant presence of high frequency components are necessary before
the total signal will abruptly change directions as it does at the zero point. The Fourier
Transform of the derivative profile in Figure B.1(b) is shown as the unfiltered original
spectrum in Figure B.2(a). To digitally filter out the high frequency components, we
chose a low-pass Gaussian filter represented by

fi= e"1’( [PTS]>

where j is the index of the discrete spectral points and PT'S varies the width of the filter.
A small PTS results in a narrow filter and vice versa. The advantage of the Gaussian
filter compared to other digital filter functions is that the filtered |@u/8r| profile goes
smoothly to zero with no small oscillations. These would cause unstable behavior in
the numerical mean flow calculations. Both the filter shape and the filtered spectrum
are shown in Figure B.2(a). As a compromise between maintaining the peak levels in
the |u/0r| profile and smoothing the zero dip. PT'S was set to 50. As can be seen in
Figure B.2, a significant amount of high frequeacy content has been removed from the
spectrum in order to smooth out the zero dip ir: the |@u/dr| profile.
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IdU/drl

r/R

Figure B.1. Example merging inverted velocity profile. (a) velocity profile; (b) magni-
tude of velocity derivative in radial direction
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Appendix C
DETAILS OF INTEGRAL EVALUATIONS

In this appendix, we outline the steps for asymptotically evaluating integrals found
in our problem. A full explanation for the procedures involved will not be given here as
they are well documented elsewhere. (E.g. Erdelyi [1956], Skudrzyk [1971], Bender and
Orszag [1978], Crighton et al. [1992])

C.1 Evaluation of Equation (3.45)

We want to evaluate (3.45) asymptotically at the intermediate limit. We begin
with the integral

0o
g (Z—,e) =4 / ﬁ(s,e:)c»:i[d’("")—'s"]/E ds (C.1)
—00

and note that the integral has the form of a Laplace integral written as

Ig (%) = /f(s)ee(s)/eds. (C.2)

The asymptotic behavior takes place as 1 /e — oo or equivalently, ¢ — 0. Now, the
functions in the integrand of (C.2) are in general complex and the path of integration,
because of Cauchy’s theorem, can be continuously deformed as long as the path does not
pass through a branch cut. Hence, a path must be found such that it passes through the
point s = 3, where 9'(3) = 0. The integrand exponentially decays away from this point
along the integration path assuming f(8) is slowly varying compared to the exponential
function, allowing the solution of the integral to be based on this maximum region.
Such a point in the complex plane is called a saddle point where both © and s are
complex. Once the saddle point is found, we can Taylor expand the integrand about this
point, revealing integrals that are directly solvable over the (—00,00) range to which the
integrals are extended. The results for ©(s) having a quadratic dependence on 3 have
been published in Dingle [1973] to many terms. Hence, to O(e)

1

Ig (.1-) ~ [_2_7[5_]7 ee/e frel- f" fe(iv) f'O'" ) 5f (9111)2

e/ -0 29”+8 e" 2t e (o)
CORRTCORETC |
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where f, ©, and their derivatives with respect to s are evaluated at the saddle point.

Now, we only need to find the f and © terms to substitute into (C.3).
Using (3.49) and (3.51), it easily follows that

0"(3) = id (3
0" (3)=id"(3)
80" (3) = ia" (3)

and
f(®= fio(?) + effl(s) F--

f(3) = Ay(3) +e4,(3) +---
') = A)@)+eA[(3) + -
Substitute (C.4) to (C.9) into (C.3) and carry out the algebra to get
b orsnsne o -
()= | ] <O e B+

where

B3) =4 (§)+ s [ i _)] A (‘)-—ﬂ—gfi ©)
S e 8[ '>] °

za”(s)

A(3) 1'(3)
2 [a (’4'7)]2 2a (3)
C.2 Evaluation of Equation (3.44)

Once (C.10) is obtained, we substitute it into
00 1+2/N 5

o 5)= [ Lq(2 ) & w0

p(79)= / sg(e’e l“" T F oF

—00 n
-2N2 4 2.2\ TEPMT,T,
(o szt ) AT

X Hél) (i,\(n) (5‘2/ N2 _ 2% MJ??F )%) } N gn

(C.4)

(C.5)
(C.6)

(C.7)
(C.8)

(C.9)

(C.10)

(C.11)

(C.12)
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and carry out the same saddle point procedure as above. After the substitution, equation

(C.12) has the form
1

Jud ee( )/
L (5) (27 511/2 / F(m)e” M dn (C.13)

with the saddle point method asymptotic form

; (_1.)~[__1_]7 o/c fee __f” . f@(w) N feo" 5f( m)
pe/ |-6" 20" " g(e") 2(e")’ (o)’

(C.14)
where f, ©, and their derivatives with respect to 7 are evaluated at the saddle point
where 3 = s and 7 = afs).

Using the results from (3.53), we get that

2
%n_g’ - f.] (C.15)
e 4

e (‘:,)3 (C.16)
d49 " 3 e 2

dn* ig;’)" ¥ i((a'))5 (€1

where primes denote derivatives with respect to s. In the above, we used the chain rule
and noted that at 3= s, 7= a(s)

(4,(3)+€BE) +--) JH2/Ng 4
_ , 9
f(n) = 172 [H’ 57 o7
[—za (s)] 1
S P 2 —
y {(52—2/N;2 et M,? 5200) ~ikep M1, 7,

X Hfll) (iA(n) (5"2/ N2 _ e2ﬁ°°MJ%2°°) %) } . (C.18)
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To begin the expansion of f(1), consider the factor

£p

82—2/Ni"2— 4_ M2_2 _z%epoo J nioo
00 j o0
and write it as
4_ 2.9 -z'%-s‘ M?U v

. — 20 -
_ —icp MU v ep_MT
f = (el I/NF) © Jne [1-—2{‘;/1{,—; . (C19)
£ r

Both terms in _f1 can be expanded using Taylor’s series.

az=1+z1na+-;-z2(lna)2+--- (C.20)

(1-2)°=1-az+ -;-a(a et 4 (C.21)

Substituting the appropriate values for the dummy variables a and z, (C.19) simplifies
to

% 5 —ics M5 ® -1/N.
f =1- ze]nep M wn o~ pooMJ .uqvooln (e r)
2
- %825200M:—2"2 ([lns] + 2lnsln( I/NF) + [ln (s—I/NF)] )
(0 (53[]115] ) . (C.22)
Next, consider the Hankel function
o) YN2 2 ..2.2\%
8 (.',\(n) (e 7 -5 M voo) ) (C.23)
where 12
(2 _ 22
Alm) = (17 - pooMJ. wn) (C.24)
1/2
(2 22,422
g= (n -€ pooM;’.wnvoo> (C.25)
@ =w-n7_. (C.26)
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Expand Hgl) about € = 0.

dq 0 (1) 0z 8
Beaqq() €+Beazq

7() = Hgl)(z) ot

0e+0 (52)

where the derivative terms with respect to ¢ are found from (C.25) and the argument of
the Hankel function in (C.23)

P MB35, n=0
_a_q_ 0 J 1 o©
O
1,22 6422
qepooMJ. RO n#0
— 2_2
0z . Epooijoo
a__ -’)‘("I) 1/2
€ (—2/N-2 2 .22 )
€ 7" —e"p M7
oo ] o©

Beginning to evaluate terms at £ = 0 we get that

g=n

z=ix(me V7

Qg= zpooMJ r]oo n=20
O¢ 0, n#0

0z
EO

Since 8¢/8c # 0 at n = 0, £ = 0, we must find aHél)/aq at ¢ = 0. The solution is found
in Abramowitz and Stegun [1965] Eq. 9.1.68.

d (1 (1
i )(z)|q=0 = ~i3Hy (2

Therefore, the expansion of (C.23) is

}
Hgl) (i)\(n) (5‘2/"’ P - &5 MT ) ) = 7! (iA(’?)E—l/ Nf)

00" j oo
+e6 5 Moz ZHDY ( A(n)e 1/Nf)
+0 (%) (C.27)
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where
5 = 1, =0
n0" | 0, n£0 °
Substituting (C.22) and (C.27) into (C.18), expanding, and combining terms, we get

4,(3) S T
f(f)) = W (1 - zelnepooMJ?wnvoo)

. 2_ -1/N . - - ¥
_zepooMjw”voo]n (e / r)+56n0p Moo 3

e © i}
+ i——2 (
|

+ er%mﬂf}) (iA(n)e—l/ N F) +0(me). (C.28)
—tx (S

When f(n) is substituted into (C.14), the derivatives of f with respect to 7 must be

determined. Much algebra is avoided by noting that ¢ multiplies f(7n) and its derivatives
to produce the following:

ef = e[—.élo((_s).;—lﬂllf(‘l) (iA(n)e_l/NF) +0 (52 lne) (C.29)
—ta (3

af o AB (V) iy, =1/
85;’- =E& [57—7 (F-a—'o(;)-]—f/-i) Hn (tA(n)E 1‘)

+ ——9—[_;(:; 7 B%H’(}) (iA(ﬂ)e"I/ N 1'-) ] +0 (*1ne) (C.30)
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A3 2
+ o )1 9 g (i,\(q)s"VN F) +0(fme).  (C31)
R / 2 a n
[—za (s)] n
The derivatives with respect to 7 must be carried out and the results evaluated at the
saddle point. To complete the derivatives of the Hankel function, we have to calculate

the derivatives of A(y) from (C.24). In addition when the second derivative of the Hankel
function appears, we use Bessel’s equation to make the substitution:

2 2
9 W= [ M- 19 5D
2.7 H (2) = (22 1) H () ; 6211" (2).
After much algebra, the evaluations of (C.29), (C.30), and (C.31) at the saddle point are

ef = T'—A:O]WHS) (iA(a)e_l/N i) +0 (*me) (C.32)
—ta

Q~|o:h~'

of_ e (A _14p
o™ L |\ 5y
~1/Nz 8

- 2
4+ A (a+'ﬁ M3 © )——-——
0 /\(a)i co” j 00 00 3(6—1/N‘F)

X H’(ll) (z‘)\(a)e_ll NF) +0 (ezlna) (C.35)
02 f e ./ig 1 Zoam fi;’a” 5 ~0 a" 2
o Tl P @ T @)

4 N
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¢~ Nz 0
M) 8 (e‘l/ N i‘)

4 -
x 48 M) 1/N F) +0(£’lne)  (C34)

where primes denote derivatives with respect to s. To complete the evaluation of (C.28)
at the saddle point, we will note that

f(n) = f(a), (C.35)
A\(3) = 4(9), (C.36)
o (3) = a'(s), (C.37)
B(3) = B(s). (C.38)

We now have all the factors in (C.14) evaluated at the saddle point. After sub-
stituting (C.15) to (C.17) and (C.32) to (C.38) into (C.14), expanding and combining
terms, the final result is given in (3.54).

C.3 Integrals in Higher Order Matching

The integrals in (3.71) are solved after the zeroth-order variables are available.
From the zeroth-order equations, we get

1%

5 = 7% or (C.39)

. _nl .

wo = ;'55 0 (C.40)

. 1 6%, a .

% = =3 % + ﬁGpO (C.41)

. _19p. . 2.

Py = %a—fvo + pM]. Py (C.42)
where all these variables are solved in terms of 1'50 after substitution for 130. From (3.24)
and (3.58), P, has the form

By = Ay(8)(T(r,9). (C43)

Each variable has its own eigenfunction form like (C.43), but we can also put them in
terms of (f . Thus,

X v o 190G
vo = A0(3)C1(7‘, 3) = Cl = i-p-_mﬁ’ (C.44)
By = dga) ) = (=T, (C.45)
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. 1 aﬁan a
i, = Ay(s)¢{(r,8) = ¢ = —;,—75;—371 + %7,—34?’ (C.46)
N 1 dp ac? )
Py = Ao(s)Cf(T, s) = Cf = -—:ﬁ—wja—i-a—} + pMj Cf (C.A47)
The outer integral in (3.71)
-1/N-
£ F P
G,(9,5)¢ (,9)
- 2 4
I, = / T (C.48)
m
where (p represents either H '('1) or H 7(12), is written as
R OR
__T Y| v VO | i ud . P
ot ="7) 3 [ v + 3y + wooRpoo+ zwaoo + zaRuoo] Tdy (C.49)

where the limits have been dropped. From (3.65) to (3.68) after substituting in from the
right side of (C.44) to (C.47) and multiplying through by 5__, we get

— P i 4 = P
P A 000 8 (A4 T4 %
Rvoo—irw or or t cofds \w Or ’,25 or (C.50)
o0 [0 ] o0
__fg_’ii(zp)_— nd (A p)_Ton Ay
woo  r W Or rcl Yoros \© Cl 2w C1 (C.51)
(o o] o0 oQ
= P
_ T A0 0 (A e\ 8,
RUOO_ r woo or "ooas w_oo Cl ds (A0<1) (C.52)

(Note in (C.49) that y is a dummy variable and that when we refer to any term in the
integrand, we will use the r variable.) After (C.50) to (C.53) are substituted into (C.49),
we eliminate terms with 1/r and 1 /r2 by using (3.21) with ¢P.

n? a%c® 19¢?

P _ 0 . 2022 .p  2.p
_:7( = - 2 i —pooMJ.woo(' +a"¢ (C.54)
2 2.p P
_I‘.P__Q_‘:__QC__— 2.2 .p, 2 .p
rC = r8r2 o pooMJ.woorC +ar (C.55)
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Examination of the resulting terms shows that derivative terms can be combined as

3 2
oPL_EER o (PN b (00d)
orS  grt Or  Or r2 Br or 61' )
and acP P, 8¢? P 9¢P
pd (19), 819G _ 8 (P0G
o (r 61‘) + drrdr Or\r 8r )" (C.57)

Following these substitutions, we carry out the differentiation with respect to s, integrate,
and combine terms to get

= 2.p P P
PR 55 P LA SIS kSt
gt Or 8r 1 Or

P__l
Yooloo O/C dy
acP
5 M % 1 f.2,0%1
P J oouoo)-,-o-'\ /yc aydy
[(1+2—‘&+p M )a'AO
+2 (a+ P MT T )4 ]]yc”c”dy

_ 2,p P P
A 8 8 P O
+ g—°° —Q,\ )Y [1'2Cp cl +1¢P C - 28( C ]} (C.58)

ar? 31‘ or Or

The outer integrals in (3.71) can be written as

- ~1/N -1
1 =-gW (iAe_I/ ud 1'-) I (gP =B (P = Hle)) T
- E_IINF-

A H’(Iz) (W._UNF) I (C” H'(‘I),C{’ = Hle))

r
m

(C.59)

r
m

This equation, as indicated in (C.58), contains six integrals that are products of powers of
v, BV, B®, and/or the derivative of H{"). They are solvable in their indefinite integral
form using standard integration techniques, using integral equations given in Luke [1962],
and using appropriate Wronskian equations for Hankel Functions given in Watson [1966].
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After the limits of integration are applied and terms combined, (C.59) takes on the form
I=F (5_1/ N F) gl (iAe'” N F)
-yN F) —9 __g® (iAs'l/ N f)
i} (s—l/ Ni‘) "
+ -’45113'('2) (i,\e’l/ N F)

- %IzHil) (i,\s‘l/ N f) (C.60)

+D(e

where F() is defined in (3.72), D() is define in (3.54), and

7_A 2 a¢E\ ac?
SN N (Y 2 I9F ¢ U - S B Rt ¥
lim12= 5 [(,2 +’\)(jcl (rmcj+ 61‘) ar

o m

6(‘.’3(1’
2,p.p_,2_71 21
X[”CJ-CI "m 3r 81'}

!
i 5 A
2 7 (

2
_j21rm>‘ a+p M?wﬁ)

00" j o0 oo

2
_ = 2.2 ! r_m_pp
(1 P Mi"oo)"‘Aoz%

o0

j oo o0
nt o2\ e Tm i%1
x [(/\2 +rm) ¢l VAT ar]' (C.61)

and derivatives are evaluated at T
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The final equation we develop is the differential equation for A0 shown in (3.76).
Substituting values into (3.74), we get

OR
{[ +2°'a—] iR, +i% -0k, ——R ~aR }dey+I = 0.

(C.62)
It is simpler to use the eigenfunction form of the disturbance variables, left side of (C.44)
to (C.47), in (C.62). Thus, we write (3.65) to (3.68) as

_ R
R = AR  — AW (C.63)
_ W
R = AR - A (C.64)
- t[zpu 1P
R, = AR - 4} [u(l + 541] (C.65)
! 2_.p u
R = AR o 4] [Mjug’l +<1] (C.66)
where
¢  a¢ 0%
=5 —L _g—1l _¢v_1
RvO_ e Cl . (C.67)
ac  a¢ v
= -7 —k _3g -cvl
Rwo— U3 ~ 55, (1 - (C.68)
a’ _a¢ g 19¢ (1 o
=—p. =l _gl_o2¢_-21_21
Bo= 1% "% "% 505 7 7.5 ﬂ (C.69)
act act  a¢
=M% 2L 2%l 12 [ ‘7']
B = =M% 5 ~ M5y ~ 3 ~ M4 7o (D 55 - (CT0)
From (C.61), we can write
I = AL - AT (C.71)
where I, and 1;0 can be determined from (C.61). Now, substituting (C.63) to (C.66)

and (C.71) into (C.62) and identifying terms multiplying A0 and A:)’ we get
'
AOI3 + AOIe =0 (C.72)

where

.
- a2 [y 2a 0% o, O
’3“”w”w0/w3{[;+u ]"41“[ G 35]
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(C.73)
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Appendix D
CONTOUR DIFFERENCING

Finite differencing equation (3.92) around a damped critical point alters the form
of the difference equation. Whether the contour is for a normal velocity profile, illustrated
in Figure D.1(a), or for an inverted velocity profile, illustrated in Figure D.1(b), the
contour consists of seven basic finite difference computational molecules. These are
shown in Figure D.2. The general finite difference equation for the central point of each
molecule is

C

WPpy1 — BoPy + AgP C AP

P P.,.—Bp, -
2%k T2 k=1 p Z10k41” 1Pk T R

1k
D2 Dl

+Z0kpk =0

where Z, and Z0 § 3Te given in (3.93). Letting z = Ar, the grid spacing in the real axis
direction, and y = iAri, the grid spacing in the imaginary axis direction, the constants
for each molecule are easily determined and given as follows:

Molecule 1:

A1=1 Bl=0 C'1=l D1=2x

_ _ _ _ .2

A2-1 B2—2 02—1 D2—z
Molecule 2:

2 2 2

A1=y Bl=:c -y Cl=a: D1=:cy(z+y)
A2=y B2=.1:+y C2=a: D2=§zy(z+y)

Molecule 3:



Molecule 4:
A =z B =y2—-z c =y2 D. =zy(z+y)
1 1 1 1
A =z B, = C.=y D,=:
g =% 2_z+y 9=Y 2—'2‘3'!1(3’*'?/)
Molecule 5:
2 2 2
A=y B1=a: -y Cl=z Dl——zy(z—y)
1
Ay=-y B,=z-y Co=2 D2=—§xy(z—y)
Molecule 6:
A1=1 Bl=0 Cl=1 D1=-—2y
A,=1 B,=2 C,=1 D =y
2 2 2 2
Molecule 7:
A=z B =y _z? c =y2 D, =—-zy(z - y)
1 1 1 1
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path of
critical point

(b)

Figure D.1. Contour paths. (a) normal velocity profile path; (b) inverted velocity
profile path
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Molecule 1
- — o
k-1 Kk k+1
Molecule 2 Molecule 5
kK+1 k-1 Kk

k-1 k k+1
Molecule 3 Molecule 6

® k+1 ® k-1

te e

A k-1 ‘ k+1
Molecule 4 Molecule 7
Kk k+1 k-1

k-1 k k+1

Figure D.2. Finite difference computational molecules for contour path.
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